2024/04/01 更新

写真a

タナカ ウシオ
田中 潮
TANAKA Ushio
担当
大学院理学研究科 数学専攻 准教授
理学部 数学科
職名
准教授
所属
理学研究院

担当・職階

  • 大学院理学研究科 数学専攻 

    准教授  2022年04月 - 継続中

  • 理学部 数学科 

    准教授  2022年04月 - 継続中

取得学位

  • Ph.D. ( The Graduate University for Advanced Studies )

研究分野

  • 自然科学一般 / 幾何学  / Differential Geometry, Global Analysis, Shape Theory, Likelihood Geometry, Persistent Homology, The Theory of Point Processes

研究キーワード

  • (Differentiable) Manifold, Bundle, Curvature, Topology, Diameter, Volume, Metric (Measure) Space; Shape Theory, Shape Space, Persistent Homology; Prime Number, Zeta; Likelihood Geometry; Point Process, Likelihood Analysis

研究概要

  • Analysis for Geometric Structures in Science, Arithmetic Point Processes

研究歴

  • Differential Topology, Global Analysis, Global Riemannian Geometry, Shape Theory, Geometric Analysis, Arithmetic Point Processes

    Bundle, Connection, Riemannian Manifold, Curvature, Topology, Diameter, Volume, Shape Space, Riemann Zeta Function, Intensity, Likelihood Geometry, Likelihood Analysis  個人研究

    2001年04月 - 継続中 

所属学協会

  • American Mathematical Society

    2020年 - 継続中   国外

  • 日本数学会

    2015年04月 - 継続中   国内

  • 日本応用数理学会

    2016年07月 - 継続中   国内

  • 日本統計学会

    2004年 - 継続中   国内

論文

▼全件表示

書籍等出版物

  • 理論統計学教程:従属性の統計理論 時空間統計解析

    矢島美寛,田中 潮( 担当: 共著)

    共立出版株式会社  2019年05月  ( ISBN:9784320113527

     詳細を見る

    総ページ数:268   著書種別:学術書   参加形態:セカンドオーサー

  • 測度論からの数理統計学

    綿森葉子,田中秀和,田中潮( 担当: 共著)

    共立出版株式会社  2023年09月  ( ISBN:9784320114975

     詳細を見る

    総ページ数:240   著書種別:教科書・概説・概論  

MISC(その他記事)

  • Simulation and Estimation of the Neyman-Scott Type Spatial Cluster Models 査読

    U. Tanaka, M. Saga and J. Nakano

    CRAN   2023年03月

     詳細を見る

    担当区分:筆頭著者   共著区分:共著   国際・国内誌:国際誌  

  • Significanceから グラフとしての數値表:ラマヌジャンの原理

    田中 潮

    英國王立統計學會   65 ( 6 )   2014年06月

     詳細を見る

講演・口頭発表等

  • Stein identity and Poincar´e inequality for a discrete metric measure space 国内会議

    Tomonari Sei and Ushio Tanaka

    2024 The Mathematical Society of Japan ANNUAL MEETING  2024年03月  The Mathematical Society of Japan

     詳細を見る

    会議種別:口頭発表(一般)  

    開催地:Osaka Metropolitan University 3–3–138 Sugimoto, Sumiyoshi-ku Osaka-shi, 558-8585, Japan  

  • Stein identity and Poincar´e inequality and exponential integrability on a metric measure space 招待 国際会議

    Tomonari Sei and Ushio Tanaka

    Statistical Theories and Machine Learning Using Geometric Methods  2023年12月  Koichi Tojo (RIKEN AIP), Hideto Nakashima (ISM), Yoshihiko Konno (Osaka Metro.Univ.), Hideyuki Ishi (Osaka Metro.Univ.), Kenji Fukumizu (ISM)

     詳細を見る

    会議種別:口頭発表(一般)  

    開催地:Academic Extension Center (Osaka Metropolitan University)  

  • An isoperimetric inequality, an expansion coefficient and a lower bound for the Cheeger constant of a metric measure space

    Ushio Tanaka

    OCAMI Differential Geometry Seminar  2023年01月  OCAMI Differential Geometry Seminar

     詳細を見る

    会議種別:公開講演,セミナー,チュートリアル,講習,講義等  

    開催地:F415, Department of Mathematics, Osaka Metropolitan University  

    The present study is intended to demonstrate an isoperimetric inequality in terms of Ledoux's expansion coefficient on a metric measure space with a certain functional inequality; the Ledoux's expansion coefficient gives rise to an exponential concentration. The result enables us to bound the Cheeger constant of the metric measure space from below in terms of the constant attributed to the functional inequality.

  • Stein-type distributions on Riemannian manifolds 国際会議

    T. Sei and U. Tanaka

    Mathematical Optimization and Statistical Theories using Geometric Methods  2022年10月  H. Nakashima, Y. Konno, H. Ishi and K. Fukumizu

     詳細を見る

    会議種別:口頭発表(一般)  

    開催地:Academic Extension Center, Osaka Metropolitan University  

  • On Geometric Properties of the Textile Set and Strict Textile Set 国際会議

    T. Sei and U. Tanaka

    4th International Conference, GSI 2019  2019年08月 

     詳細を見る

    会議種別:口頭発表(一般)  

    開催地:Toulouse, France  

    その他リンク: https://link.springer.com/chapter/10.1007/978-3-030-26980-7_1

Works(作品等)

産学官連携可能研究(シーズ)概要

  • Differential Geometry; Shape Theory; Likelihood Geometry; Stochastic Geometry, The Theory of Point Processes and Spatial Statistics; Mathematics for 碁 & 碁art

     詳細を見る

    交流の種別:技術相談, 受託研究, 共同研究, 講演  

科研費獲得実績

  • コピュラの情報幾何学的特徴付けによるグラフィカルモデリング

    基盤研究(C)  2025年

  • コピュラの情報幾何学的特徴付けによるグラフィカルモデリング

    基盤研究(C)  2024年

  • Analysis for asymptotic theory of cluster point processes and GUI implementation of R package on point process analysis

    若手研究(B)  2013年04月

担当授業科目

  • 数理統計学1

    2024年度   週間授業   大学

  • 数学特別研究2A

    2024年度   集中講義   大学院

  • 数学特別研究1A

    2024年度   集中講義   大学院

  • 数学特別研究5A

    2024年度   集中講義   大学院

  • 数学特別研究4A

    2024年度   集中講義   大学院

  • 数学特別研究3A

    2024年度   集中講義   大学院

  • 数理統計学II

    2024年度   週間授業   大学

  • 確率統計II

    2021年度    

  • 確率統計I

    2021年度    

  • 統計学基礎I

    2021年度    

  • 統計学基礎I

    2021年度    

▼全件表示

社会貢献活動 ⇒ 社会貢献実績一覧へ

  • 変分原理に基づく数学

    役割:講師

    種別:セミナー・ワークショップ

    大阪公立大学  公大授業  2022年04月

     詳細を見る

    対象: 高校生, 社会人・一般, 市民団体

    参加者数:106(人)

  • Professors Seminar, 等周問題

    役割:講師

    種別:出張講義

    高大連携  2018年11月

  • 府立泉北高等学校SSH (スーパーサイエンスハイスクール) 大学訪問研修 変分問題入門

    役割:講師

    2016年07月

出張講義テーマ ⇒ 出張講義一覧へ

  • 等周問題

    分野:理学(数学,物理学,化学,生物学,地球学,生物化学)

     詳細を見る

    対象:未就学児, 小学生, 中学生, 高校生, 大学生, 教育関係者, 研究者, 社会人・一般, 企業, 市民団体

    キーワード:等周不等式 

    物理法則は簡明に記述され,真理は単純である.この信念は,自然界の原理として古くから知られ,変分原理といわれる.変分問題は,変分原理に基づく問題であり,エネルギー最小を数学的に探る問題といえる.本セミナーでは,古代ローマの伝説上の女王Didoが臣下に命じた,変分問題の起源のひとつとして知られている等周問題を紹介する.

  • 変分問題入門

    分野:理学(数学,物理学,化学,生物学,地球学,生物化学)

     詳細を見る

    対象:未就学児, 小学生, 中学生, 高校生, 大学生, 教育関係者, 研究者, 社会人・一般, 企業, 市民団体

    キーワード:微分幾何学,最小作用の原理,Plateau問題,平均曲率,Gauss曲率,極小曲面,平均曲率一定曲面,Computer Graphics 

    ミツバチの巣にみられるハニカム構造は,建築物をはじめ多様なものに応用されています.これはハニカム構造がコストの経済性や強度に優れていることに基づきますが,それは何故でしょうか.この問題の数学的定式化は今から約2000年以上前に予想され,2001年,長い年月を経て証明されました.

    さて,自然は作用を最小にする,といわれます.いわゆる「最小作用の原理」です.変分問題はこれらを数学的枠組みで捉え,出張講義ではこれに関する入門的講義をします.「極小曲面」(石鹸膜の幾何学的モデル) と「平均曲率一定曲面」(シャボン玉の幾何学的モデル) が変分問題において中心的な役割を果たします.

    ところで,数学は一般には物理的実験要素を含みませんが,変分問題はこの点において一線を画す分野といえます.加えて,近年Computer Graphicsの発展により,様々な様相を呈する極小曲面と平均曲率一定曲面の可視化が実現しました.変分問題を通して数学を視覚的に楽しめることも変分問題の醍醐味のひとつと思います.