2023/04/19 更新

写真a

イシダ ヒロアキ
石田 裕昭
ISHIDA HIROAKI
担当
大学院理学研究科 数学専攻 准教授
理学部 数学科
職名
准教授
所属
理学研究院
所属キャンパス
杉本キャンパス

担当・職階

  • 大学院理学研究科 数学専攻 

    准教授  2023年04月 - 継続中

  • 理学部 数学科 

    准教授  2023年04月 - 継続中

取得学位

  • 博士(理学) ( 大阪市立大学 )

  • 修士(理学) ( 大阪市立大学 )

  • 学士(理学) ( 大阪市立大学 )

論文

  • Strong cohomological rigidity of Hirzebruch surface bundles in Bott towers 査読

    Hiroaki ISHIDA

    Journal of the Mathematical Society of Japan   -1 ( -1 )   2023年03月( ISSN:0025-5645

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    DOI: 10.2969/jmsj/88718871

  • Non-invariant deformations of left-invariant complex structures on compact Lie groups 査読

    Hiroaki Ishida, Hisashi Kasuya

    Forum Mathematicum   2022年04月( ISSN:0933-7741 ( eISSN:1435-5337

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    Abstract

    We give small deformations of a left-invariant complex structure on each simply connected semisimple compact Lie group of even dimension which are not biholomorphic to any left-invariant (right-invariant) complex structure by using the Kuranishi space.On such deformed complex manifolds, we prove the Borel–Weil–Bott type theorem, and we compute the cohomology of holomorphic tangent bundles.

    DOI: 10.1515/forum-2021-0133

    その他URL: https://www.degruyter.com/document/doi/10.1515/forum-2021-0133/pdf

  • Basic Cohomology of Canonical Holomorphic Foliations on Complex Moment-Angle Manifolds 査読

    Hiroaki Ishida, Roman Krutowski, Taras Panov

    International Mathematics Research Notices   2022 ( 7 )   5541 - 5563   2022年03月( ISSN:1073-7928 ( eISSN:1687-0247

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    Abstract

    We describe the basic cohomology ring of the canonical holomorphic foliation on a moment-angle manifold, LVMB-manifold, or any complex manifold with a maximal holomorphic torus action. Namely, we show that the basic cohomology has a description similar to the cohomology ring of a complete simplicial toric variety due to Danilov and Jurkiewicz. This settles a question of Battaglia and Zaffran, who previously computed the basic Betti numbers for the canonical holomorphic foliation in the case of a shellable fan. Our proof uses an Eilenberg–Moore spectral sequence argument; the key ingredient is the formality of the Cartan model for the torus action on a moment-angle manifold. We develop the concept of transverse equivalence as an important tool for studying smooth and holomorphic foliated manifolds. For an arbitrary complex manifold with a maximal torus action, we show that it is transverse equivalent to a moment-angle manifold and therefore has the same basic cohomology.

    DOI: 10.1093/imrn/rnaa252

  • Complex manifolds with maximal torus actions 査読

    Hiroaki Ishida

    Journal für die reine und angewandte Mathematik (Crelles Journal)   2019 ( 751 )   121 - 184   2019年06月( ISSN:0075-4102 ( eISSN:1435-5345

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    <title>Abstract</title>In this paper, we introduce the notion of maximal actions of compact tori on smooth manifolds and study compact connected complex manifolds equipped with maximal actions of compact tori. We give a complete classification of such manifolds, in terms of combinatorial objects, which are triples <inline-formula id="j_crelle-2016-0023_ineq_9999_w2aab3b7b1b1b6b1aab1c14b1b1Aa"><alternatives><inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_crelle-2016-0023_eq_0410.png" /><tex-math>{(\Delta,\mathfrak{h},G)}</tex-math></alternatives></inline-formula> of nonsingular complete fan Δ in <inline-formula id="j_crelle-2016-0023_ineq_9998_w2aab3b7b1b1b6b1aab1c14b1b3Aa"><alternatives><inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_crelle-2016-0023_eq_1084.png" /><tex-math>{\mathfrak{g } }</tex-math></alternatives></inline-formula>, complex vector subspace <inline-formula id="j_crelle-2016-0023_ineq_9997_w2aab3b7b1b1b6b1aab1c14b1b5Aa"><alternatives><inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_crelle-2016-0023_eq_1090.png" /><tex-math>{\mathfrak{h } }</tex-math></alternatives></inline-formula> of <inline-formula id="j_crelle-2016-0023_ineq_9996_w2aab3b7b1b1b6b1aab1c14b1b7Aa"><alternatives><inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_crelle-2016-0023_eq_1080.png" /><tex-math>{\mathfrak{g}^{\mathbb{C } } }</tex-math></alternatives></inline-formula> and compact torus <italic>G</italic> satisfying certain conditions. We also give an equivalence of categories with suitable definitions of morphisms in these families, like toric geometry. We obtain several results as applications of our equivalence of categories; complex structures on moment-angle manifolds, classification of holomorphic nondegenerate <inline-formula id="j_crelle-2016-0023_ineq_9995_w2aab3b7b1b1b6b1aab1c14b1c11Aa"><alternatives><inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_crelle-2016-0023_eq_0986.png" /><tex-math>{\mathbb{C}^{n } }</tex-math></alternatives></inline-formula>-actions on compact connected complex manifolds of complex dimension <italic>n</italic>, and construction of concrete examples of non-Kähler manifolds.

    DOI: 10.1515/crelle-2016-0023

    その他URL: https://www.degruyter.com/document/doi/10.1515/crelle-2016-0023/pdf

  • Transverse Kähler structures on central foliations of complex manifolds 査読

    Hiroaki Ishida, Hisashi Kasuya

    Annali di Matematica Pura ed Applicata (1923 -)   198 ( 1 )   61 - 81   2019年02月( ISSN:0373-3114 ( eISSN:1618-1891

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    DOI: 10.1007/s10231-018-0762-8

    その他URL: http://link.springer.com/article/10.1007/s10231-018-0762-8/fulltext.html

  • Torus invariant transverse Kähler foliations 査読

    Hiroaki Ishida

    Transactions of the American Mathematical Society   369 ( 7 )   5137 - 5155   2017年03月( ISSN:0002-9947 ( eISSN:1088-6850

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    <p>In this paper, we show the convexity of the image of a moment map on a transverse symplectic manifold equipped with a torus action under a certain condition. We also study properties of moment maps in the case of transverse Kähler manifolds. As an application, we give a positive answer to the conjecture posed by Cupit-Foutou and Zaffran.</p>

    DOI: 10.1090/tran/7070

  • The cohomology ring of the GKM graph of a flag manifold of classical type 査読

    Yukiko Fukukawa, Hiroaki Ishida, Mikiya Masuda

    Kyoto Journal of Mathematics   54 ( 3 )   2014年( ISSN:2156-2261

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    DOI: 10.1215/21562261-2693478

  • INVARIANT STABLY COMPLEX STRUCTURES ON TOPOLOGICAL TORIC MANIFOLDS 査読

    Ishida Hiroaki

    Osaka Journal of Mathematics   50 ( 3 )   795 - 806   2013年09月( ISSN:0030-6126

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    We show that any (C^*)^n-invariant stably complex structure on a topological toric manifold of dimension 2n is integrable. We also show that such a manifold is weakly (C^*)^n-equivariantly isomorphic to a toric manifold.

    CiNii Article

    その他URL: http://hdl.handle.net/11094/26017

  • Completely integrable torus actions on complex manifolds with fixed points 査読

    Hiroaki Ishida, Yael Karshon

    Mathematical Research Letters   19 ( 6 )   1283 - 1295   2013年07月( ISSN:1073-2780 ( eISSN:1945-001X

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    DOI: 10.4310/mrl.2012.v19.n6.a9

  • Topological Toric Manifolds 査読

    Hiroaki Ishida, Yukiko Fukukawa, Mikiya Masuda

    Moscow Mathematical Journal   13 ( 1 )   57 - 98   2013年( ISSN:1609-3321 ( eISSN:1609-4514

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    DOI: 10.17323/1609-4514-2013-13-1-57-98

  • Todd genera of complex torus manifolds 査読

    Hiroaki Ishida, Mikiya Masuda

    Algebraic & Geometric Topology   12 ( 3 )   1777 - 1788   2012年08月( ISSN:1472-2747 ( eISSN:1472-2739

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    DOI: 10.2140/agt.2012.12.1777

  • Filtered cohomological rigidity of Bott towers 査読

    Hiroaki Ishida

    Osaka Journal of Mathematics   49 ( 2 )   515 - 522   2012年07月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

  • Symplectic real Bott manifolds 査読

    Hiroaki Ishida

    Proceedings of the American Mathematical Society   139 ( 8 )   3009 - 3014   2011年01月( ISSN:0002-9939 ( eISSN:1088-6826

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    <p>A real Bott manifold is the total space of an iterated <inline-formula content-type="math/mathml">
    <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper R upper P Superscript 1">
    <mml:semantics>
    <mml:mrow>
    <mml:mrow class="MJX-TeXAtom-ORD">
    <mml:mi mathvariant="double-struck">R</mml:mi>
    </mml:mrow>
    <mml:msup>
    <mml:mi>P</mml:mi>
    <mml:mn>1</mml:mn>
    </mml:msup>
    </mml:mrow>
    <mml:annotation encoding="application/x-tex">\mathbb {R}P^1</mml:annotation>
    </mml:semantics>
    </mml:math>
    </inline-formula>-bundle over a point, where each <inline-formula content-type="math/mathml">
    <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper R upper P Superscript 1">
    <mml:semantics>
    <mml:mrow>
    <mml:mrow class="MJX-TeXAtom-ORD">
    <mml:mi mathvariant="double-struck">R</mml:mi>
    </mml:mrow>
    <mml:msup>
    <mml:mi>P</mml:mi>
    <mml:mn>1</mml:mn>
    </mml:msup>
    </mml:mrow>
    <mml:annotation encoding="application/x-tex">\mathbb {R}P^1</mml:annotation>
    </mml:semantics>
    </mml:math>
    </inline-formula>-bundle is the projectivization of a Whitney sum of two real line bundles. In this paper, we characterize real Bott manifolds which admit a symplectic form. In particular, it turns out that a real Bott manifold admits a symplectic form if and only if it is cohomologically symplectic. In this case, it admits even a Kähler structure. We also prove that any symplectic cohomology class of a real Bott manifold can be represented by a symplectic form. Finally, we study the flux of a symplectic real Bott manifold.</p>

    DOI: 10.1090/s0002-9939-2011-10729-9

▼全件表示

科研費獲得実績

  • リー群上の両側トーラス作用の幾何とトポロジー

    基盤研究(C)  2028年

  • リー群上の両側トーラス作用の幾何とトポロジー

    基盤研究(C)  2027年

  • リー群上の両側トーラス作用の幾何とトポロジー

    基盤研究(C)  2026年

  • リー群上の両側トーラス作用の幾何とトポロジー

    基盤研究(C)  2025年

  • リー群上の両側トーラス作用の幾何とトポロジー

    基盤研究(C)  2024年

担当授業科目

  • 微分幾何学1演習

    2024年度   週間授業   大学

  • 微分幾何学1

    2024年度   週間授業   大学

  • 数学特別研究2A

    2024年度   集中講義   大学院

  • 数学特別研究1A

    2024年度   集中講義   大学院

  • 幾何構造論特別講義A

    2024年度   集中講義   大学院

  • 数学特別研究5A

    2024年度   集中講義   大学院

  • 数学特別研究4A

    2024年度   集中講義   大学院

  • 数学特別研究3A

    2024年度   集中講義   大学院

▼全件表示