2023/10/26 更新

写真a

ミヨシ エイスケ
三好 英輔
MIYOSHI EISUKE
担当
大学院工学研究科 機械系専攻 講師
工学部 機械工学科
職名
講師
所属
工学研究院

担当・職階

  • 大学院工学研究科 機械系専攻 

    講師  2023年04月 - 継続中

  • 工学部 機械工学科 

    講師  2023年04月 - 継続中

取得学位

  • 博士(工学) ( 京都工芸繊維大学 )

  • 修士(工学) ( 京都工芸繊維大学 )

  • 学士(工学) ( 京都工芸繊維大学 )

研究キーワード

  • 計算材料科学

  • 粒界

  • 微視組織

  • 再結晶・粒成長

  • フェーズフィールド法

所属学協会

  • 日本材料学会

    2017年04月 - 継続中

  • 日本鉄鋼協会

    2016年04月 - 継続中

  • 日本機械学会

    2014年10月 - 継続中

受賞歴

  • 日本材料学会学術奨励賞

    三好 英輔

    2022年05月   日本材料学会  

  • 日本機械学会奨励賞(研究)

    三好 英輔

    2022年04月   日本機械学会  

  • 第68期学術講演会 優秀講演発表賞

    三好 英輔

    2019年06月   日本材料学会  

  • 鉄鋼プロセス研究会・材料化学研究会 平成30年度第2回合同研究会 優秀発表賞

    三好 英輔

    2018年12月   日本鉄鋼協会関西支部・日本金属学会関西支部  

  • Poster Award

    三好 英輔

    2018年11月   The 9th International Conference on Multiscale Materials Modeling (MMM2018)  

  • 第31回計算力学講演会 Phase-Field Student Award

    三好 英輔

    2018年11月   日本機械学会  

  • ポスター支部長賞

    三好 英輔

    2017年12月   日本材料学会関西支部  

  • Best Oral Presentation Award

    三好 英輔

    2017年08月   10th Pacific Rim International Conference on Modeling of Casting and Solidification Processes (MCSP2017)  

  • 三浦賞

    三好 英輔

    2017年03月   日本機械学会  

  • 第173回春季講演大会学生ポスターセッション 優秀賞

    三好 英輔

    2017年03月   日本鉄鋼協会  

  • 第171回春季講演大会学生ポスターセッション 努力賞

    三好 英輔

    2016年03月   日本鉄鋼協会  

  • 第1回材料WEEK若手学生研究発表会 ベストプレゼンテーション賞

    三好 英輔

    2015年10月   日本材料学会  

  • 第28回計算力学講演会 Phase-Field Student Award

    三好 英輔

    2015年10月   日本機械学会  

  • 学長表彰

    三好 英輔

    2015年03月   京都工芸繊維大学  

▼全件表示

職務経歴(学外)

  • 大阪公立大学   大学院工学研究科機械系専攻   講師

    2023年04月 - 継続中

  • 東京農工大学   大学院工学研究院 先端機械システム部門   助教

    2020年11月 - 2023年03月

  • 京都工芸繊維大学   特任研究員

    2020年04月 - 2020年10月

  • 独立行政法人日本学術振興会   特別研究員(DC1)

    2017年04月 - 2020年03月

論文

  • Effects of aluminum and oxygen additions on quenched-in compositional fluctuations, dynamic atomic shuffling, and their resultant diffusionless isothermal ω transformation in ternary Ti–V-based alloys with bcc structure

    Tane M.

    Acta Materialia   255   119034 - 119034   2023年05月( ISSN:1359-6454

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    DOI: 10.1016/j.actamat.2023.119034

  • Validating a mean-field theory via large-scale phase-field simulations for abnormal grain growth induced by nonuniform grain boundary properties

    Miyoshi E.

    Journal of Materials Science   57 ( 35 )   16690 - 16709   2022年09月( ISSN:0022-2461

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    DOI: 10.1007/s10853-022-07660-4

    その他URL: https://link.springer.com/article/10.1007/s10853-022-07660-4/fulltext.html

  • Efficient estimation of material parameters using DMC-BO: Application to phase-field simulation of solid-state sintering

    Ishii A.

    Materials Today Communications   30   2022年03月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    DOI: 10.1016/j.mtcomm.2021.103089

  • Novel estimation method for anisotropic grain boundary properties based on Bayesian data assimilation and phase-field simulation

    Miyoshi E.

    Materials and Design   210   2021年11月( ISSN:0264-1275

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    DOI: 10.1016/j.matdes.2021.110089

  • Estimation of solid-state sintering and material parameters using phase-field modeling and ensemble four-dimensional variational method

    Ishii A.

    Modelling and Simulation in Materials Science and Engineering   29 ( 6 )   2021年09月( ISSN:0965-0393

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    DOI: 10.1088/1361-651X/ac13cd

  • Large-scale phase-field study of anisotropic grain growth: Effects of misorientation-dependent grain boundary energy and mobility

    Miyoshi E.

    Computational Materials Science   186   2021年01月( ISSN:0927-0256

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    DOI: 10.1016/j.commatsci.2020.109992

  • Accuracy evaluation of phase-field models for grain growth simulation with anisotropic grain boundary properties

    Miyoshi E.

    60 ( 1 )   160 - 167   2020年01月( ISSN:09151559

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    DOI: 10.2355/isijinternational.isijint-2019-305

    CiNii Article

  • Micrometer-scale molecular dynamics simulation of microstructure formation linked with multi-phase-field simulation in same space scale

    Shibuta Y.

    Modelling and Simulation in Materials Science and Engineering   27 ( 5 )   2019年07月( ISSN:0965-0393

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    DOI: 10.1088/1361-651X/ab1d28

  • Large-scale phase-field simulation of three-dimensional isotropic grain growth in polycrystalline thin films

    Miyoshi E.

    Modelling and Simulation in Materials Science and Engineering   27 ( 5 )   2019年07月( ISSN:0965-0393

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    DOI: 10.1088/1361-651X/ab1e8b

  • Correlation between three-dimensional and cross-sectional characteristics of ideal grain growth: large-scale phase-field simulation study

    Eisuke Miyoshi, Tomohiro Takaki, Munekazu Ohno, Yasushi Shibuta, Shinji Sakane, Takashi Shimokawabe, Takayuki Aoki

    JOURNAL OF MATERIALS SCIENCE   53 ( 21 )   15165 - 15180   2018年11月( ISSN:0022-2461

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    Grain growth is one of the most fundamental phenomena affecting the microstructure of polycrystalline materials. In experimental studies, three-dimensional (3D) grain growth is usually investigated by examining two-dimensional (2D) cross sections. However, the extent to which the 3D microstructural characteristics can be obtained from cross-sectional observations remains unclear. Additionally, there is some disagreement as to whether a cross-sectional view of 3D grain growth can be fully approximated by 2D growth. In this study, by employing the multi-phase-field method and parallel graphics processing unit computing on a supercomputer, we perform large-scale simulations of 3D and 2D ideal grain growth with approximately three million initial grains. This computational scale supports the detailed comparison of 3D, cross-sectional, and 2D grain structures with good statistical reliability. Our simulations reveal that grain growth behavior in a cross section is very different from those in 3D and fully 2D spaces, in terms of the average and distribution of the grain sizes, as well as the growth kinetics of individual grains. On the other hand, we find that the average grain size in 3D can be estimated as being around 1.2 times that observed in a cross section, which is in good agreement with classical theory in the stereology. Furthermore, based on the Saltykov-Schwartz method, we propose a predictive model that can estimate the 3D grain size distribution from the cross-sectional size distribution.

    DOI: 10.1007/s10853-018-2680-y

  • Bridging molecular dynamics and phase-field methods for grain growth prediction

    Eisuke Miyoshi, Tomohiro Takaki, Yasushi Shibuta, Munekazu Ohno

    COMPUTATIONAL MATERIALS SCIENCE   152   118 - 124   2018年09月( ISSN:0927-0256

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    To achieve a highly accurate and efficient prediction of polycrystalline grain growth, we propose a method to bridge atomistic and continuum-based simulations by converting molecular dynamics-generated atomic configurations into interfacial profiles of the phase-field model. This method enables us to perform phase-field grain growth simulations in succession to molecular dynamics nucleation simulation. Using the present method, molecular dynamics and phase-field grain growth simulations from the same initial structure are carried out and directly compared. The results of each simulation exhibit a similar tendency in terms of grain morphology and grain growth kinetics, but only after an initial short duration.

    DOI: 10.1016/j.commatsci.2018.05.046

  • Grain growth kinetics in submicrometer-scale molecular dynamics simulation

    Shin Okita, Eisuke Miyoshi, Shinji Sakane, Tomohiro Takaki, Munekazu Ohno, Yasushi Shibuta

    ACTA MATERIALIA   153   108 - 116   2018年07月( ISSN:1359-6454

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    Grain growth kinetics under the anisotropic grain boundary properties is investigated by large-scale and long-time molecular dynamics (MD) simulations of contentious processes of nucleation, solidification and grain growth in a submicrometer-scale system. Microstructures obtained via homogeneous nucleation from undercooled melt iron consists of approximately 1500 grains and the number of grains decreases to one tenth of the number via the grain growth process. The grain growth exponent obtained from the MD simulation deviates from the ideal value since anisotropic effects in the grain boundary properties are inherently included in MD simulations. It is confirmed that the decrease of the reduced mobility (i.e., the product of the intrinsic grain boundary mobility and the grain boundary energy) is a dominant factor for the deviation from the ideal grain growth. The deviation from the Mackenzie function for the distribution of the disorientation angle between neighboring grains implies that the preferential selection of grain boundaries with small grain boundary energies occurs during the grain growth. This enhances the anisotropy in grain boundary properties and therefore decreases the reduced mobility of the grain boundary. Moreover, a multi-phase-field simulation starting from a MD configuration results in an ideal grain growth when a constant value of the reduced mobility is employed, which validates the discussion on the reduced mobility. The new insight in this study is achieved for the first time owing to a multi-graphics processing unit (GPU) parallel computation over 50 days for one case using 128 GPUs on the GPU-rich supercomputer. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

    DOI: 10.1016/j.actamat.2018.04.060

  • Multi-phase-field study of the effects of anisotropic grain-boundary properties on polycrystalline grain growth

    Eisuke Miyoshi, Tomohiro Takaki

    JOURNAL OF CRYSTAL GROWTH   474   160 - 165   2017年09月( ISSN:0022-0248

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    Numerical studies of the effects of anisotropic (misorientation-dependent) grain-boundary energy and mobility on polycrystalline grain growth have been carried out for decades. However, conclusive knowledge has yet to be obtained even for the simplest two-dimensional case, which is mainly due to limitations in the computational accuracy of the grain-growth models and computer resources that have been employed to date. Our study attempts to address these problems by utilizing a higher-order multi-phase-field (MPF) model, which was developed to accurately simulate grain growth with anisotropic grain-boundary properties. In addition, we also employ general-purpose computing on graphics processing units to accelerate MPF grain-growth simulations. Through a series of simulations of anisotropic grain growth, we succeeded in confirming that both the anisotropies in grain-boundary energy and mobility affect the morphology formed during grain growth. On the other hand, we found the grain growth kinetics in anisotropic systems to follow parabolic law similar to isotropic growth, but only after an initial transient period.

    DOI: 10.1016/j.jcrysgro.2016.11.097

  • Ultra-large-scale phase-field simulation study of ideal grain growth

    Eisuke Miyoshi, Tomohiro Takaki, Munekazu Ohno, Yasushi Shibuta, Shinji Sakane, Takashi Shimokawabe, Takayuki Aoki

    NPJ COMPUTATIONAL MATERIALS   3   2017年07月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    Grain growth, a competitive growth of crystal grains accompanied by curvature-driven boundary migration, is one of the most fundamental phenomena in the context of metallurgy and other scientific disciplines. However, the true picture of grain growth is still controversial, even for the simplest (or 'ideal') case. This problem can be addressed only by large-scale numerical simulation. Here, we analyze ideal grain growth via ultra-large-scale phase-field simulations on a supercomputer for elucidating the corresponding authentic statistical behaviors. The performed simulations are more than ten times larger in time and space than the ones previously considered as the largest; this computational scale gives a strong indication of the achievement of true steady-state growth with statistically sufficient number of grains. Moreover, we provide a comprehensive theoretical description of ideal grain growth behaviors correctly quantified by the present simulations. Our findings provide conclusive knowledge on ideal grain growth, establishing a platform for studying more realistic growth processes.

    DOI: 10.1038/s41524-017-0029-8

  • Heterogeneity in homogeneous nucleation from billion-atom molecular dynamics simulation of solidification of pure metal

    Yasushi Shibuta, Shinji Sakane, Eisuke Miyoshi, Shin Okita, Tomohiro Takaki, Munekazu Ohno

    NATURE COMMUNICATIONS   8   2017年04月( ISSN:2041-1723

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    Can completely homogeneous nucleation occur? Large scale molecular dynamics simulations performed on a graphics-processing-unit rich supercomputer can shed light on this long-standing issue. Here, a billion-atom molecular dynamics simulation of homogeneous nucleation from an undercooled iron melt reveals that some satellite-like small grains surrounding previously formed large grains exist in the middle of the nucleation process, which are not distributed uniformly. At the same time, grains with a twin boundary are formed by heterogeneous nucleation from the surface of the previously formed grains. The local heterogeneity in the distribution of grains is caused by the local accumulation of the icosahedral structure in the undercooled melt near the previously formed grains. This insight is mainly attributable to the multi-graphics processing unit parallel computation combined with the rapid progress in high-performance computational environments.

    DOI: 10.1038/s41467-017-00017-5

  • Extended higher-order multi-phase-field model for three-dimensional anisotropic-grain-growth simulations

    Eisuke Miyoshi, Tomohiro Takaki

    COMPUTATIONAL MATERIALS SCIENCE   120   77 - 83   2016年07月( ISSN:0927-0256

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    Based on the multi-phase-field (MPF) model reported by Steinbach et al., we constructed a higher-order MPF model in a previous study that contains a higher-order term and an additional kinetic parameter to represent the properties of triple junctions (TJs); this model was observed to be suitable for the simulation of 2D grain growth with anisotropic grain-boundary (GB) energy and mobility, which are strongly dependent on the misorientation angle (Delta theta). In the current study, we attempt to improve the accuracy of 3D MPF simulations of anisotropic grain growth by extending this higher-order MPF model such that it accounts for the properties of quadruple junctions as well as those of TJs. In addition, using the extended higher-order MPF model, a series of grain-growth simulations are performed for a 3D columnar structure while considering the anisotropic GB properties, through which the accuracy of the model is examined in detail. The results confirm that the extended higher-order MPF model enables the anisotropic GB properties to be handled accurately for wider-ranging Delta theta than in previous models. (C) 2016 Elsevier B.V. All rights reserved.

    DOI: 10.1016/j.commatsci.2016.04.014

  • Validation of a novel higher-order multi-phase-field model for grain-growth simulations using anisotropic grain-boundary properties

    Eisuke Miyoshi, Tomohiro Takaki

    COMPUTATIONAL MATERIALS SCIENCE   112   44 - 51   2016年02月( ISSN:0927-0256

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    The multi-phase-field (MPF) model proposed by Steinbach et al. has several advantages when it comes to numerically simulating the grain growth, recrystallization, and multiple phase transitions. In this study, in order to improve the accuracy of MPF simulations using the anisotropic grain-boundary energy and mobility, which depend strongly on the misorientation angles, we account for the triple-junction properties in the MPF model. Further, two-dimensional simulations of grain-boundary migrations in three-grain systems as well as simulations of abnormal grain growth in a polycrystalline system are performed using the proposed model, in order to confirm its validity. The results show that the proposed model allows for the introduction of the anisotropic energy and mobility with high accuracy for a wider range of misorientations, in contrast to the conventional model. (C) 2015 Elsevier B.V. All rights reserved.

    DOI: 10.1016/j.commatsci.2015.10.010

▼全件表示

学外での担当授業科目

  • 機械システム工学実験I

    2022年04月
    -
    2022年09月
    機関名:東京農工大学工学部

  • 機械システム工学実験II

    2021年10月
    -
    2023年03月
    機関名:東京農工大学工学部

  • 基礎ゼミ

    2021年04月
    -
    2022年09月
    機関名:東京農工大学工学部

  • 工学基礎実験

    2021年04月
    -
    2022年09月
    機関名:東京農工大学工学部