2024/05/14 更新

写真a

ウエダ ダイジュ
植田 大樹
UEDA DAIJU
担当
大学院医学研究科 基礎医科学専攻 准教授
医学部 医学科
職名
准教授
所属
医学研究院
所属キャンパス
阿倍野キャンパス

担当・職階

  • 大学院医学研究科 基礎医科学専攻 

    准教授  2024年04月 - 継続中

  • 医学部 医学科 

    准教授  2024年04月 - 継続中

取得学位

  • 博士(医学) ( 大阪市立大学 )

研究分野

  • ライフサイエンス / 放射線科学  / 人工知能

研究キーワード

  • 放射線

  • 医用画像

  • 人工知能

  • ディープラーニング

所属学協会

  • Institute of Electrical and Electronics Engineers

    2018年 - 継続中

  • Radiological Society of North America

    2016年04月 - 継続中

  • 日本医学放射線学会

    2016年04月 - 継続中

  • 日本IVR学会

    2016年04月 - 継続中

受賞歴

  • 医用画像人工知能研究奨励賞

    植田大樹

    2023年04月   日本医学放射線学会  

  • 学会賞

    2023年03月   大阪市学会  

  • 南部陽一郎記念若手奨励賞

    植田大樹

    2022年12月   大阪公立大学  

  • Certificate of Merit

    Hiroki Yonezawa, Daiju Ueda, Akira Yamamoto, Ken Kageyama, Shannon Walston, Takehito Nota, Kazuki Murai, Satoyuki Ogawa, Etsuji Sohgawa, Atsushi Jogo, Daijiro Kabata, Yukio Miki

    2022年09月   The Cardiovascular and Interventional Radiological Society of Europe   Generation of synthetic subtraction angiograms in abdominal region using deep learning

  • 優秀論文賞

    Daiju Ueda

    2022年06月   日本IVR学会  

  • Japanese Journal of Radiology 優秀論文賞

    Daiju Ueda

    2022年04月   日本医学放射線学会  

  • Featured Abstract

    Daiju Ueda

    2020年08月   日本IVR学会  

  • 優秀論文賞

    Daiju Ueda

    2020年05月   日本医学放射線学会  

  • The Best of Radiology

    Daiju Ueda

    2019年12月   北米放射線学会  

  • 医学部長賞 優秀賞

    Daiju Ueda

    2019年03月   大阪市立大学  

▼全件表示

論文

  • Enhancing AI-assisted Interpretation of Chest Radiographs: A Critical Analysis of Methods and Applicability.

    Walston SL, Ueda D

    Radiology   311 ( 2 )   e233428   2024年05月( ISSN:0033-8419

     詳細を見る

  • Evaluating Biases and Quality Issues in Intermodality Image Translation Studies for Neuroradiology: A Systematic Review.

    Walston SL, Tatekawa H, Takita H, Miki Y, Ueda D

    AJNR. American journal of neuroradiology   2024年04月( ISSN:0195-6108

     詳細を見る

  • The impact of large language models on radiology: a guide for radiologists on the latest innovations in AI 査読

    Nakaura T.

    Japanese Journal of Radiology   2024年03月( ISSN:18671071

     詳細を見る

    掲載種別:研究論文(学術雑誌)   国際・国内誌:国内誌  

    DOI: 10.1007/s11604-024-01552-0

    PubMed

  • Evaluation of cranial nerve involvement in chordomas and chondrosarcomas: a retrospective imaging study 査読

    Oura T.

    Neuroradiology   2024年02月( ISSN:00283940

     詳細を見る

    掲載種別:研究論文(学術雑誌)   国際・国内誌:国際誌  

    DOI: 10.1007/s00234-024-03322-1

    PubMed

  • Deep learning-based diffusion tensor image generation model: a proof-of-concept study 査読

    Tatekawa H.

    Scientific Reports   14 ( 1 )   2911 - 2911   2024年02月

     詳細を見る

    掲載種別:研究論文(学術雑誌)   国際・国内誌:国際誌  

    DOI: 10.1038/s41598-024-53278-8

    PubMed

  • Diagnostic Performance of Generative AI and Physicians: A Systematic Review and Meta-Analysis

    Hirotaka Takita, Shannon L Walston, Hiroyuki Tatekawa, Kenichi Saito, Yasushi Tsujimoto, Yukio Miki, Daiju Ueda

    medRxiv   2024年01月

     詳細を見る

    担当区分:最終著者, 責任著者  

    Abstract

    Background

    The rapid advancement of generative artificial intelligence (AI) has revolutionized understanding and generation of human language. Their integration into healthcare has shown potential for improving medical diagnostics, yet a comprehensive diagnostic performance evaluation of generative AI models and the comparison of their diagnostic performance with that of physicians has not been extensively explored.

    Methods

    In this systematic review and meta-analysis, a comprehensive search of Medline, Scopus, Web of Science, Cochrane Central, and medRxiv was conducted for studies published from June 2018 through December 2023, focusing on those that validate generative AI models for diagnostic tasks. Meta-analysis was performed to summarize the performance of the models and to compare the accuracy of the models with that of physicians. The quality of studies was assessed using the Prediction Model Study Risk of Bias Assessment Tool.

    Results

    The search resulted in 54 studies being included in the meta-analysis, with 13 of these also used in the comparative analysis. Eight models were evaluated across 17 medical specialties. The overall accuracy for generative AI models across 54 studies was 57% (95% confidence interval [CI]: 51–63%). The I-squared statistic of 96% signifies a high degree of heterogeneity among the study results. Meta-regression analysis of generative AI models revealed significantly improved accuracy for GPT-4, and reduced accuracy for some specialties such as Neurology, Endocrinology, Rheumatology, and Radiology. The comparison meta-analysis demonstrated that, on average, physicians exceeded the accuracy of the models (difference in accuracy: 14% [95% CI: 8–19%], p-value <0.001). However, in the performance comparison between GPT-4 and physicians, GPT-4 performed slightly higher than non-experts (–4% [95% CI: –10–2%], p-value = 0.173), and slightly underperformed compared to experts (6% [95% CI: –1–13%], p-value = 0.091). The quality assessment indicated a high risk of bias in the majority of studies, primarily due to small sample sizes.

    Conclusions

    Generative AI exhibits promising diagnostic capabilities, with accuracy varying significantly by model and medical specialty. Although they have not reached the reliability of expert physicians, the findings suggest that generative AI models have the potential to enhance healthcare delivery and medical education, provided they are integrated with caution and their limitations are well-understood. This study also highlights the need for more rigorous research standards and a larger number of cases in the future.

    DOI: 10.1101/2024.01.20.24301563

  • Evaluating GPT-4-based ChatGPT's clinical potential on the NEJM quiz 査読

    Daiju Ueda, Shannon L. Walston, Toshimasa Matsumoto, Ryo Deguchi, Hiroyuki Tatekawa, Yukio Miki

    BMC Digital Health   2 ( 1 )   2024年01月( eISSN:2731-684X

     詳細を見る

    担当区分:筆頭著者, 責任著者   掲載種別:研究論文(学術雑誌)  

    Abstract

    Background

    GPT-4-based ChatGPT demonstrates significant potential in various industries; however, its potential clinical applications remain largely unexplored.

    Methods

    We employed the New England Journal of Medicine (NEJM) quiz “Image Challenge” from October 2021 to March 2023 to assess ChatGPT's clinical capabilities. The quiz, designed for healthcare professionals, tests the ability to analyze clinical scenarios and make appropriate decisions. We evaluated ChatGPT's performance on the NEJM quiz, analyzing its accuracy rate by questioning type and specialty after excluding quizzes which were impossible to answer without images. ChatGPT was first asked to answer without the five multiple-choice options, and then after being given the options.

    Results

    ChatGPT achieved an 87% (54/62) accuracy without choices and a 97% (60/62) accuracy with choices, after excluding 16 image-based quizzes. Upon analyzing performance by quiz type, ChatGPT excelled in the Diagnosis category, attaining 89% (49/55) accuracy without choices and 98% (54/55) with choices. Although other categories featured fewer cases, ChatGPT's performance remained consistent. It demonstrated strong performance across the majority of medical specialties; however, Genetics had the lowest accuracy at 67% (2/3).

    Conclusion

    ChatGPT demonstrates potential for diagnostic applications, suggesting its usefulness in supporting healthcare professionals in making differential diagnoses and enhancing AI-driven healthcare.

    DOI: 10.1186/s44247-023-00058-5

    その他URL: https://link.springer.com/article/10.1186/s44247-023-00058-5/fulltext.html

  • Challenges of using artificial intelligence to detect valvular heart disease from chest radiography – Authors' reply 査読

    Ueda D.

    The Lancet Digital Health   6 ( 1 )   e10 - e10   2024年01月( ISSN:2589-7500

     詳細を見る

    担当区分:筆頭著者, 責任著者   掲載種別:研究論文(学術雑誌)  

    DOI: 10.1016/s2589-7500(23)00224-8

    PubMed

  • Comparison of the diagnostic accuracy among GPT-4 based ChatGPT, GPT-4V based ChatGPT, and radiologists in musculoskeletal radiology

    Daisuke Horiuchi, Hiroyuki Tatekawa, Tatsushi Oura, Taro Shimono, Shannon L Walston, Hirotaka Takita, Shu Matsushita, Yasuhito Mitsuyama, Yukio Miki, Daiju Ueda

    medRxiv   2023年12月

     詳細を見る

    担当区分:最終著者, 責任著者  

    Abstract

    Objective

    To compare the diagnostic accuracy of Generative Pre-trained Transformer (GPT)-4 based ChatGPT, GPT-4 with vision (GPT-4V) based ChatGPT, and radiologists in musculoskeletal radiology.

    Materials and Methods

    We included 106 “Test Yourself” cases fromSkeletal Radiologybetween January 2014 and September 2023. We input the medical history and imaging findings into GPT-4 based ChatGPT and the medical history and images into GPT-4V based ChatGPT, then both generated a diagnosis for each case. Two radiologists (a radiology resident and a board-certified radiologist) independently provided diagnoses for all cases. The diagnostic accuracy rates were determined based on the published ground truth. Chi-square tests were performed to compare the diagnostic accuracy of GPT-4 based ChatGPT, GPT-4V based ChatGPT, and radiologists.

    Results

    GPT-4 based ChatGPT significantly outperformed GPT-4V based ChatGPT (p< 0.001) with accuracy rates of 43% (46/106) and 8% (9/106), respectively. The radiology resident and the board-certified radiologist achieved accuracy rates of 41% (43/106) and 53% (56/106). The diagnostic accuracy of GPT-4 based ChatGPT was comparable to that of the radiology resident but was lower than that of the board-certified radiologist, although the differences were not significant (p= 0.78 and 0.22, respectively). The diagnostic accuracy of GPT-4V based ChatGPT was significantly lower than those of both radiologists (p< 0.001 and < 0.001, respectively).

    Conclusion

    GPT-4 based ChatGPT demonstrated significantly higher diagnostic accuracy than GPT-4V based ChatGPT. While GPT-4 based ChatGPT’s diagnostic performance was comparable to radiology residents, it did not reach the performance level of board-certified radiologists in musculoskeletal radiology.

    DOI: 10.1101/2023.12.07.23299707

  • Accuracy of ChatGPT generated diagnosis from patient's medical history and imaging findings in neuroradiology cases 査読

    Horiuchi D.

    Neuroradiology   66 ( 1 )   73 - 79   2023年11月( ISSN:00283940

     詳細を見る

    担当区分:最終著者, 責任著者   掲載種別:研究論文(学術雑誌)   国際・国内誌:国際誌  

    DOI: 10.1007/s00234-023-03252-4

    PubMed

  • Revolutionizing radiation therapy: the role of AI in clinical practice 査読

    Kawamura M.

    Journal of Radiation Research   65 ( 1 )   1 - 9   2023年11月( ISSN:0449-3060 ( eISSN:1349-9157

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    DOI: 10.1093/jrr/rrad090

    PubMed

  • Development and validation of artificial intelligence-based algorithms for predicting the segments debulked by rotational atherectomy using intravascular ultrasound

    Kenta Hashimoto, Kenichi Fujii, Daiju Ueda, Akinori Sumiyoshi, Katsuyuki Hasegawa, Rei Fukuhara, Munemitsu Otagaki, Atsunori Okamura, Wataru Yamamoto, Naoki Kawano, Akira Yamamoto, Yukio Miki, Iichiro Shiojima

    medRxiv   2023年11月

     詳細を見る

    Abstract

    Background

    Although rotation atherectomy (RA) is a useful technique for severely calcified lesions, patients undergoing RA show a greater incidence of catastrophic complications, such as coronary perforation. Therefore, prior to the RA procedure, it is important to predict which regions of the coronary plaque will be debulked by RA.

    Objectives

    We develop and evaluate an artificial intelligence–based algorithm that uses pre-RA intravascular ultrasound (IVUS) images to automatically predict regions debulked by RA

    Methods

    A total of 2106 IVUS cross-sections from 60 patients with de novo severely calcified coronary lesions who underwent IVUS-guided RA were consecutively collected. The two identical IVUS images of pre-and post-RA were merged, and the orientations of the debulked segments identified in the merged images are marked on the outer circle of each IVUS image. The artificial intelligence model was developed based on ResNet (deep residual learning for image recognition). The architecture connected 36 fully connected layers, each corresponding to one of the 36 orientations segmented every 10°, to a single feature extractor.

    Results

    In each cross-sectional analysis, our artificial intelligence model achieved an average sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 81%, 72%, 46%, 90%, and 75%, respectively.

    Conclusions

    The artificial intelligence–based algorithm can use information from pre-RA IVUS images to accurately predict regions debulked by RA. The proposed method will assist interventional cardiologists in determining the treatment strategies for severely calcified coronary lesions.

    DOI: 10.1101/2023.11.07.23298239

  • Bridging Language and Stylistic Barriers in IR Standardized Reporting: Enhancing Translation and Structure Using ChatGPT-4 査読

    Sasaki F.

    Journal of Vascular and Interventional Radiology   35 ( 3 )   472 - 475.e1   2023年11月( ISSN:1051-0443

     詳細を見る

    担当区分:最終著者   掲載種別:研究論文(学術雑誌)  

    DOI: 10.1016/j.jvir.2023.11.014

    PubMed

  • Comparative Analysis of ChatGPT’s Diagnostic Performance with Radiologists Using Real-World Radiology Reports of Brain Tumors

    Yasuhito Mitsuyama, Hiroyuki Tatekawa, Hirotaka Takita, Fumi Sasaki, Akane Tashiro, Satoshi Oue, Shannon L Walston, Yukio Miki, Daiju Ueda

    medRxiv   2023年10月

     詳細を見る

    担当区分:最終著者, 責任著者  

    Abstract

    Background

    Large Language Models like Chat Generative Pre-trained Transformer (ChatGPT) have demonstrated potential for differential diagnosis in radiology. Previous studies investigating this potential primarily utilized quizzes from academic journals, which may not accurately represent real-world clinical scenarios.

    Purpose

    This study aimed to assess the diagnostic capabilities of ChatGPT using actual clinical radiology reports of brain tumors and compare its performance with that of neuroradiologists and general radiologists.

    Methods

    We consecutively collected brain MRI reports from preoperative brain tumor patients at Osaka Metropolitan University Hospital, taken from January to December 2021. ChatGPT and five radiologists were presented with the same findings from the reports and asked to suggest differential and final diagnoses. The pathological diagnosis of the excised tumor served as the ground truth. Chi-square tests and Fisher’s exact test were used for statistical analysis.

    Results

    In a study analyzing 99 radiological reports, ChatGPT achieved a final diagnostic accuracy of 75% (95% CI: 66, 83%), while radiologists’ accuracy ranged from 64% to 82%. ChatGPT’s final diagnostic accuracy using reports from neuroradiologists was higher at 82% (95% CI: 71, 89%), compared to 52% (95% CI: 33, 71%) using those from general radiologists with a p-value of 0.012. In the realm of differential diagnoses, ChatGPT’s accuracy was 95% (95% CI: 91, 99%), while radiologists’ fell between 74% and 88%. Notably, for these differential diagnoses, ChatGPT’s accuracy remained consistent whether reports were from neuroradiologists (96%, 95% CI: 89, 99%) or general radiologists (91%, 95% CI: 73, 98%) with a p-value of 0.33.

    Conclusion

    ChatGPT exhibited good diagnostic capability, comparable to neuroradiologists in differentiating brain tumors from MRI reports. ChatGPT can be a second opinion for neuroradiologists on final diagnoses and a guidance tool for general radiologists and residents, especially for understanding diagnostic cues and handling challenging cases.

    Summary

    This study evaluated ChatGPT’s diagnostic capabilities using real-world clinical MRI reports from brain tumor cases, revealing that its accuracy in interpreting brain tumors from MRI findings is competitive with radiologists.

    Key results

    ChatGPT demonstrated a diagnostic accuracy rate of 75% for final diagnoses based on preoperative MRI findings from 99 brain tumor cases, competing favorably with five radiologists whose accuracies ranged between 64% and 82%. For differential diagnoses, ChatGPT achieved a remarkable 95% accuracy, outperforming several of the radiologists.

    Radiology reports from neuroradiologists and general radiologists showed varying accuracy when input into ChatGPT. Reports from neuroradiologists resulted in higher diagnostic accuracy for final diagnoses, while there was no difference in accuracy for differential diagnoses between neuroradiologists and general radiologists.

    DOI: 10.1101/2023.10.27.23297585

  • New trend in artificial intelligence-based assistive technology for thoracic imaging 査読

    Yanagawa M.

    Radiologia Medica   128 ( 10 )   1236 - 1249   2023年10月( ISSN:00338362

     詳細を見る

    掲載種別:研究論文(学術雑誌)   国際・国内誌:国際誌  

    DOI: 10.1007/s11547-023-01691-w

    PubMed

  • From FDG and beyond: the evolving potential of nuclear medicine 査読

    Hirata K.

    Annals of Nuclear Medicine   37 ( 11 )   583 - 595   2023年09月( ISSN:09147187

     詳細を見る

    掲載種別:研究論文(学術雑誌)   国際・国内誌:国内誌  

    DOI: 10.1007/s12149-023-01865-6

    PubMed

  • Chest radiography as a biomarker of ageing: artificial intelligence-based, multi-institutional model development and validation in Japan 査読

    Mitsuyama Y.

    The Lancet Healthy Longevity   4 ( 9 )   e478 - e486   2023年09月( ISSN:2666-7568

     詳細を見る

    担当区分:最終著者, 責任著者   掲載種別:研究論文(学術雑誌)   国際・国内誌:国際誌  

    DOI: 10.1016/s2666-7568(23)00133-2

    PubMed

  • Comparison of the Diagnostic Performance from Patient’s Medical History and Imaging Findings between GPT-4 based ChatGPT and Radiologists in Challenging Neuroradiology Cases

    Daisuke Horiuchi, Hiroyuki Tatekawa, Tatsushi Oura, Satoshi Oue, Shannon L Walston, Hirotaka Takita, Shu Matsushita, Yasuhito Mitsuyama, Taro Shimono, Yukio Miki, Daiju Ueda

    medRxiv   2023年08月

     詳細を見る

    担当区分:最終著者, 責任著者  

    Abstract

    Purpose

    To compare the diagnostic performance between Chat Generative Pre-trained Transformer (ChatGPT), based on the GPT-4 architecture, and radiologists from patient’s medical history and imaging findings in challenging neuroradiology cases.

    Methods

    We collected 30 consecutive “Freiburg Neuropathology Case Conference” cases from the journal Clinical Neuroradiology between March 2016 and June 2023. GPT-4 based ChatGPT generated diagnoses from the patient’s provided medical history and imaging findings for each case, and the diagnostic accuracy rate was determined based on the published ground truth. Three radiologists with different levels of experience (2, 4, and 7 years of experience, respectively) independently reviewed all the cases based on the patient’s provided medical history and imaging findings, and the diagnostic accuracy rates were evaluated. The Chi-square tests were performed to compare the diagnostic accuracy rates between ChatGPT and each radiologist.

    Results

    ChatGPT achieved an accuracy rate of 23% (7/30 cases). Radiologists achieved the following accuracy rates: a junior radiology resident had 27% (8/30) accuracy, a senior radiology resident had 30% (9/30) accuracy, and a board-certified radiologist had 47% (14/30) accuracy. ChatGPT’s diagnostic accuracy rate was lower than that of each radiologist, although the difference was not significant (p= 0.99, 0.77, and 0.10, respectively).

    Conclusion

    The diagnostic performance of GPT-4 based ChatGPT did not reach the performance level of either junior/senior radiology residents or board-certified radiologists in challenging neuroradiology cases. While ChatGPT holds great promise in the field of neuroradiology, radiologists should be aware of its current performance and limitations for optimal utilization.

    DOI: 10.1101/2023.08.28.23294607

  • Fairness of artificial intelligence in healthcare: review and recommendations 招待 査読

    Ueda D.

    Japanese Journal of Radiology   42 ( 1 )   3 - 15   2023年08月( ISSN:18671071

     詳細を見る

    担当区分:筆頭著者, 責任著者   掲載種別:研究論文(学術雑誌)   国際・国内誌:国内誌  

    DOI: 10.1007/s11604-023-01474-3

    PubMed

  • AI-based Virtual Synthesis of Methionine PET from Contrast-enhanced MRI: Development and External Validation Study 査読

    Takita H.

    Radiology   308 ( 2 )   e223016   2023年08月( ISSN:00338419

     詳細を見る

    担当区分:最終著者, 責任著者   掲載種別:研究論文(学術雑誌)   国際・国内誌:国際誌  

    DOI: 10.1148/radiol.223016

    PubMed

  • Artificial intelligence-based model to classify cardiac functions from chest radiographs: a multi-institutional, retrospective model development and validation study 査読

    Ueda D.

    The Lancet Digital Health   5 ( 8 )   e525 - e533   2023年08月( ISSN:2589-7500

     詳細を見る

    担当区分:筆頭著者, 責任著者   掲載種別:研究論文(学術雑誌)   国際・国内誌:国際誌  

    DOI: 10.1016/s2589-7500(23)00107-3

    PubMed

  • The Association of Metabolic Brain MRI, Amyloid PET, and Clinical Factors: A Study of Alzheimer's Disease and Normal Controls From the Open Access Series of Imaging Studies Dataset 査読

    Matsushita S.

    Journal of Magnetic Resonance Imaging   59 ( 4 )   1341 - 1348   2023年07月( ISSN:1053-1807 ( eISSN:1522-2586

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    DOI: 10.1002/jmri.28892

    PubMed

  • ChatGPT's Diagnostic Performance from Patient History and Imaging Findings on the Diagnosis Please Quizzes 査読

    Ueda D.

    Radiology   308 ( 1 )   e231040   2023年07月( ISSN:00338419

     詳細を見る

    担当区分:筆頭著者, 責任著者   掲載種別:研究論文(学術雑誌)   国際・国内誌:国際誌  

    DOI: 10.1148/radiol.231040

    PubMed

  • Recent advances in artificial intelligence for cardiac CT: Enhancing diagnosis and prognosis prediction 査読

    Tatsugami F.

    Diagnostic and Interventional Imaging   104 ( 11 )   521 - 528   2023年07月( ISSN:2211-5684

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    DOI: 10.1016/j.diii.2023.06.011

    PubMed

  • Deep learning for pneumothorax diagnosis: a systematic review and meta-analysis 査読

    Sugibayashi T.

    European Respiratory Review   32 ( 168 )   220259 - 220259   2023年06月( ISSN:0905-9180 ( eISSN:1600-0617

     詳細を見る

    担当区分:最終著者, 責任著者   掲載種別:研究論文(学術雑誌)  

    DOI: 10.1183/16000617.0259-2022

    PubMed

  • Clinical applications of artificial intelligence in liver imaging 査読

    Yamada A.

    Radiologia Medica   128 ( 6 )   655 - 667   2023年05月( ISSN:00338362 ( eISSN:1826-6983

     詳細を見る

  • Evaluating GPT-4-based ChatGPT's Clinical Potential on the NEJM Quiz

    Daiju Ueda, Shannon Walston, Toshimasa Matsumoto, Ryo Deguchi, Hiroyuki Tatekawa, Yukio Miki

    medRxiv   2023年05月

     詳細を見る

    担当区分:筆頭著者, 責任著者  

    Background GPT-4-based ChatGPT demonstrates significant potential in various industries; however, its potential clinical applications remain largely unexplored. Methods We employed the New England Journal of Medicine (NEJM) quiz "Image Challenge" from October 2021 to March 2023 to assess ChatGPT's clinical capabilities. The quiz, designed for healthcare professionals, tests the ability to analyze clinical scenarios and make appropriate decisions. We evaluated ChatGPT's performance on the NEJM quiz, analyzing its accuracy rate by questioning type and specialty after excluding quizzes which were impossible to answer without images. The NEJM quiz has five multiple-choice options, but ChatGPT was first asked to answer without choices, and then given the choices to answer afterwards, in order to evaluate the accuracy in both scenarios. Results ChatGPT achieved an 87% accuracy without choices and a 97% accuracy with choices, after excluding 16 image-based quizzes. Upon analyzing performance by quiz type, ChatGPT excelled in the Diagnosis category, attaining 89% accuracy without choices and 98% with choices. Although other categories featured fewer cases, ChatGPT's performance remained consistent. It demonstrated strong performance across the majority of medical specialties; however, Genetics had the lowest accuracy at 67%. Conclusion ChatGPT demonstrates potential for clinical application, suggesting its usefulness in supporting healthcare professionals and enhancing AI-driven healthcare.

    DOI: 10.1101/2023.05.04.23289493

  • Deep learning-based screening tool for rotator cuff tears on shoulder radiography 査読

    Iio R.

    Journal of Orthopaedic Science   2023年05月( ISSN:0949-2658

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    DOI: 10.1016/j.jos.2023.05.004

    PubMed

  • Deep Learning Model Based on Contrast-Enhanced Computed Tomography Imaging to Predict Postoperative Early Recurrence after the Curative Resection of a Solitary Hepatocellular Carcinoma 査読

    Kinoshita M.

    Cancers   15 ( 7 )   2140 - 2140   2023年04月( ISSN:2072-6694 ( eISSN:2072-6694

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    DOI: 10.3390/cancers15072140

    PubMed

  • diffusion tensor image analysis along the perivascular space(DTI-ALPS) indexで再現性の改善 OASIS-3データセットを用いた再構成技術による解析法(Improved reproducibility of diffusion tensor image analysis along the perivascular space(DTI-ALPS) index: an analysis of reorientation technique of the OASIS-3 dataset)

    Tatekawa Hiroyuki, Matsushita Shu, Ueda Daiju, Takita Hirotaka, Horiuchi Daisuke, Atsukawa Natsuko, Morishita Yuka, Tsukamoto Taro, Shimono Taro, Miki Yukio

    Japanese Journal of Radiology   41 ( 4 )   393 - 400   2023年04月( ISSN:1867-1071

     詳細を見る

    拡散テンソルイメージング(DTI)データの画像再構成により、analysis along the perivascular space(ALPS) indexにおいて再現性の改善を試みた。なお、本報では脳MRI画像データが登録されたオープンデータベースOASIS-3データセットから、認知機能が正常な234名(男性123名、女性111名、年齢42~92歳)の画像データを用いて実施した。また、DTIのベクトル情報を他の血管周囲腔に位置合わせする画像再構成技術を適用し、元データのALPS indexと再構成したALPS indexを新たに求め、再構成処理したdiffusivity mapを作成した。これらデータ間を比較した結果、再構成処理したALPS indexの変動は元データのALPS indexに比べ有意に小さく、再構成技術により、頭部回転を有する被験者でも良好ないし優れたALPS index数値の再現性が得られた。特にx軸で頭部回転が観察された被験者では、元データALPS indexと再構成したALPS indexを比較したBland-Altmanプロットにより、広範囲に及ぶ95%一致限界が認められたことから、x軸の頭部回転はALPS indexの算出に著しく影響を及ぼすことが示唆された。以上より、本法による再構成技術を適用したDTI-ALPS index算出によりALPSの再現性が改善され、再構成処理したdiffusivity mapも作成可能となった。

  • Deep Learning–Based Time-to-Death Prediction Model for COVID-19 Patients Using Clinical Data and Chest Radiographs 査読

    Matsumoto T.

    Journal of Digital Imaging   36 ( 1 )   178 - 188   2023年02月( ISSN:0897-1889 ( eISSN:1618-727X

     詳細を見る

    担当区分:最終著者, 責任著者   掲載種別:研究論文(学術雑誌)   国際・国内誌:国際誌  

    DOI: 10.1007/s10278-022-00691-y

    PubMed

    その他URL: https://link.springer.com/article/10.1007/s10278-022-00691-y/fulltext.html

  • Current State of Artificial Intelligence in Clinical Applications for Head and Neck MR Imaging 査読

    Fujima N.

    Magnetic Resonance in Medical Sciences   22 ( 4 )   401 - 414   2023年( ISSN:1347-3182 ( eISSN:1880-2206

     詳細を見る

    掲載種別:研究論文(学術雑誌)   国際・国内誌:国内誌  

    DOI: 10.2463/mrms.rev.2023-0047

  • Response: Evaluating Diagnostic Performance of ChatGPT in Radiology: Delving into Methods

    Ueda D.

    Radiology   308 ( 3 )   1 - 2   2023年( ISSN:00338419

     詳細を見る

  • 人工知能による画像変換技術の神経放射線領域への応用について

    田北 大昂, 植田 大樹

    医用画像情報学会雑誌   40 ( 4 )   66 - 74   2023年( ISSN:09101543 ( eISSN:18804977

     詳細を見る

  • Nervus: A Comprehensive Deep Learning Classification, Regression, and Prognostication Tool for both Medical Image and Clinical Data Analysis

    Toshimasa Matsumoto, Shannon L Walston, Yukio Miki, Daiju Ueda

    arXiv   2022年12月

     詳細を見る

    担当区分:最終著者, 責任著者  

    DOI: 10.48550/arXiv.2212.11113

  • Improved reproducibility of diffusion tensor image analysis along the perivascular space (DTI-ALPS) index: an analysis of reorientation technique of the OASIS-3 dataset 査読

    Tatekawa H.

    Japanese Journal of Radiology   41 ( 4 )   393 - 400   2022年12月( ISSN:1867-1071 ( eISSN:1867-108X

     詳細を見る

  • Artificial intelligence-based model for COVID-19 prognosis incorporating chest radiographs and clinical data; a retrospective model development and validation study 査読

    Walston S.L.

    British Journal of Radiology   95 ( 1140 )   20220058 - 20220058   2022年12月( ISSN:0007-1285 ( eISSN:1748-880X

     詳細を見る

    担当区分:最終著者, 責任著者   掲載種別:研究論文(学術雑誌)   国際・国内誌:国際誌  

    DOI: 10.1259/bjr.20220058

    PubMed

  • Deep learning-based algorithm for lung cancer detection on chest radiographs using the segmentation method 査読

    Akitoshi Shimazaki, Daiju Ueda, Antoine Choppin, Akira Yamamoto, Takashi Honjo, Yuki Shimahara, Yukio Miki

    Scientific Reports   12 ( 1 )   2022年12月( eISSN:2045-2322

     詳細を見る

    担当区分:責任著者   掲載種別:研究論文(学術雑誌)  

    <title>Abstract</title>We developed and validated a deep learning (DL)-based model using the segmentation method and assessed its ability to detect lung cancer on chest radiographs. Chest radiographs for use as a training dataset and a test dataset were collected separately from January 2006 to June 2018 at our hospital. The training dataset was used to train and validate the DL-based model with five-fold cross-validation. The model sensitivity and mean false positive indications per image (mFPI) were assessed with the independent test dataset. The training dataset included 629 radiographs with 652 nodules/masses and the test dataset included 151 radiographs with 159 nodules/masses. The DL-based model had a sensitivity of 0.73 with 0.13 mFPI in the test dataset. Sensitivity was lower in lung cancers that overlapped with blind spots such as pulmonary apices, pulmonary hila, chest wall, heart, and sub-diaphragmatic space (0.50–0.64) compared with those in non-overlapped locations (0.87). The dice coefficient for the 159 malignant lesions was on average 0.52. The DL-based model was able to detect lung cancers on chest radiographs, with low mFPI.

    DOI: 10.1038/s41598-021-04667-w

    その他URL: https://www.nature.com/articles/s41598-021-04667-w

  • 多列検出器コンピューター断層撮影により診断されたS状結腸間膜ヘルニアによる絞扼性小腸閉塞 症例報告(Strangulated Small-bowel Obstruction due to Transmesosigmoid Hernia Diagnosed with Multidetector Computed Tomography: A Case Report)

    Takeshita Tohru, Matsushima Hisakazu, Ikeda Kimimasa, Noma Toshiki, Goto Takuya, Ueda Daiju

    Osaka City Medical Journal   68 ( 2 )   91 - 98   2022年12月( ISSN:0030-6096

     詳細を見る

    症例は79歳女性。50歳代時に虫垂炎のため虫垂切除を行った。75歳時に子宮頸部扁平上皮細胞癌と診断され、放射線療法と化学療法を行い、治療の42ヵ月後の経過観察では再発は認められなかった。診察により左下部に圧痛が認められた。上腹部レントゲン検査でニボーを伴う弛緩性ループが観察され、当初は癒着性の小腸閉塞と診断された。保存療法では症状が変化しなかったため、腹部と骨盤の造影多列検出器コンピューター断層撮影を行った。その結果、S状結腸間膜の欠如による腸間膜脂肪組織と腸間膜血管による小腸への陥入が観察され、絞扼性小腸閉塞(TMSH)と診断した。緊急開腹手術を行い、TMSHが確認された。小腸の壊死部分を切除し、術後9日目に退院した。

  • Artificial intelligence-based detection of atrial fibrillation from chest radiographs. 査読

    Toshimasa Matsumoto, Shoichi Ehara, Shannon L Walston, Yasuhito Mitsuyama, Yukio Miki, Daiju Ueda

    European radiology   32 ( 9 )   5890 - 5897   2022年09月( eISSN:1432-1084

     詳細を見る

    担当区分:最終著者, 責任著者   掲載種別:研究論文(学術雑誌)   国際・国内誌:国際誌  

    OBJECTIVE: The purpose of this study was to develop an artificial intelligence (AI)-based model to detect features of atrial fibrillation (AF) on chest radiographs. METHODS: This retrospective study included consecutively collected chest radiographs of patients who had echocardiography at our institution from July 2016 to May 2019. Eligible radiographs had been acquired within 30 days of the echocardiography. These radiographs were labeled as AF-positive or AF-negative based on the associated electronic medical records; then, each patient was randomly divided into training, validation, and test datasets in an 8:1:1 ratio. A deep learning-based model to classify radiographs as with or without AF was trained on the training dataset, tuned with the validation dataset, and evaluated with the test dataset. RESULTS: The training dataset included 11,105 images (5637 patients; 3145 male, mean age ± standard deviation, 68 ± 14 years), the validation dataset included 1388 images (704 patients, 397 male, 67 ± 14 years), and the test dataset included 1375 images (706 patients, 395 male, 68 ± 15 years). Applying the model to the validation and test datasets gave a respective area under the curve of 0.81 (95% confidence interval, 0.78-0.85) and 0.80 (0.76-0.84), sensitivity of 0.76 (0.70-0.81) and 0.70 (0.64-0.76), specificity of 0.75 (0.72-0.77) and 0.74 (0.72-0.77), and accuracy of 0.75 (0.72-0.77) and 0.74 (0.71-0.76). CONCLUSION: Our AI can identify AF on chest radiographs, which provides a new way for radiologists to infer AF. KEY POINTS: • A deep learning-based model was trained to detect atrial fibrillation in chest radiographs, showing that there are indicators of atrial fibrillation visible even on static images. • The validation and test datasets each gave a solid performance with area under the curve, sensitivity, and specificity of 0.81, 0.76, and 0.75, respectively, for the validation dataset, and 0.80, 0.70, and 0.74, respectively, for the test dataset. • The saliency maps highlighted anatomical areas consistent with those reported for atrial fibrillation on chest radiographs, such as the atria.

    DOI: 10.1007/s00330-022-08752-0

    PubMed

    その他URL: https://link.springer.com/article/10.1007/s00330-022-08752-0/fulltext.html

  • Visual and quantitative evaluation of microcalcifications in mammograms with deep learning-based super-resolution 査読

    Honjo T.

    European Journal of Radiology   154   110433 - 110433   2022年09月( ISSN:0720-048X

     詳細を見る

    担当区分:責任著者   掲載種別:研究論文(学術雑誌)   国際・国内誌:国際誌  

    DOI: 10.1016/j.ejrad.2022.110433

    PubMed

  • Maskless 2-Dimensional Digital Subtraction Angiography Generation Model for Abdominal Vasculature using Deep Learning. 査読

    Hiroki Yonezawa, Daiju Ueda, Akira Yamamoto, Ken Kageyama, Shannon Leigh Walston, Takehito Nota, Kazuki Murai, Satoyuki Ogawa, Etsuji Sohgawa, Atsushi Jogo, Daijiro Kabata, Yukio Miki

    Journal of vascular and interventional radiology : JVIR   33 ( 7 )   845 - 851   2022年07月( ISSN:1051-0443

     詳細を見る

    担当区分:責任著者   掲載種別:研究論文(学術雑誌)   国際・国内誌:国際誌  

    PURPOSE: To develop a deep learning (DL) model to generate synthetic, 2-dimensional subtraction angiograms free of artifacts from native abdominal angiograms. MATERIALS AND METHODS: In this retrospective study, 2-dimensional digital subtraction angiography (2D-DSA) images and native angiograms were consecutively collected from July 2019 to March 2020. Images were divided into motion-free (training, validation, and motion-free test datasets) and motion-artifact (motion-artifact test dataset) sets. A total of 3,185, 393, 383, and 345 images from 87 patients (mean age, 71 years ± 10; 64 men and 23 women) were included in the training, validation, motion-free, and motion-artifact test datasets, respectively. Native angiograms and 2D-DSA image pairs were used to train and validate an image-to-image translation model to generate synthetic DL-based subtraction angiography (DLSA) images. DLSA images were quantitatively evaluated by the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) using the motion-free dataset and were qualitatively evaluated via visual assessments by radiologists with a numerical rating scale using the motion-artifact dataset. RESULTS: The DLSA images showed a mean PSNR (± standard deviation) of 43.05 dB ± 3.65 and mean SSIM of 0.98 ± 0.01, indicating high agreement with the original 2D-DSA images in the motion-free dataset. Qualitative visual evaluation by radiologists of the motion-artifact dataset showed that DLSA images contained fewer motion artifacts than 2D-DSA images. Additionally, DLSA images scored similar to or higher than 2D-DSA images for vascular visualization and clinical usefulness. CONCLUSIONS: The developed DL model generated synthetic, motion-free subtraction images from abdominal angiograms with similar imaging characteristics to 2D-DSA images.

    DOI: 10.1016/j.jvir.2022.03.010

    PubMed

  • Deep learning-based detection of parathyroid adenoma by 99mTc-MIBI scintigraphy in patients with primary hyperparathyroidism. 査読

    Atsushi Yoshida, Daiju Ueda, Shigeaki Higashiyama, Yutaka Katayama, Toshimasa Matsumoto, Takashi Yamanaga, Yukio Miki, Joji Kawabe

    Annals of nuclear medicine   36 ( 5 )   468 - 478   2022年05月( ISSN:0914-7187 ( eISSN:1864-6433

     詳細を見る

    担当区分:責任著者   掲載種別:研究論文(学術雑誌)   国際・国内誌:国内誌  

    OBJECTIVE: It is important to detect parathyroid adenomas by parathyroid scintigraphy with 99m-technetium sestamibi (99mTc-MIBI) before surgery. This study aimed to develop and validate deep learning (DL)-based models to detect parathyroid adenoma in patients with primary hyperparathyroidism, from parathyroid scintigrams with 99mTc-MIBI. METHODS: DL-based models for detecting parathyroid adenoma in early- and late-phase parathyroid scintigrams were, respectively, developed and evaluated. The training dataset used to train the models was collected from 192 patients (165 adenoma cases, mean age: 64 years ± 13, 145 women) and the validation dataset used to tune the models was collected from 45 patients (30 adenoma cases, mean age: 67 years ± 12, 37 women). The images were collected from patients who were pathologically diagnosed with parathyroid adenomas or in whom no lesions could be detected by either parathyroid scintigraphy or ultrasonography at our institution from June 2010 to March 2019. The models were tested on a dataset collected from 44 patients (30 adenoma cases, mean age: 67 years ± 12, 38 women) who took scintigraphy from April 2019 to March 2020. The models' lesion-based sensitivity and mean false positive indications per image (mFPI) were assessed with the test dataset. RESULTS: The sensitivity was 82% [95% confidence interval 72-92%] with mFPI of 0.44 for the scintigrams of the early-phase model and 83% [73-92%] with mFPI of 0.31 for the scintigrams of the delayed-phase model in the test dataset, respectively. CONCLUSIONS: The DL-based models were able to detect parathyroid adenomas with a high sensitivity using parathyroid scintigraphy with 99m-technetium sestamibi.

    DOI: 10.1007/s12149-022-01726-8

    PubMed

    その他URL: https://link.springer.com/article/10.1007/s12149-022-01726-8/fulltext.html

  • 原発性副甲状腺機能亢進症患者への99mTc-MIBIシンチグラフィーによる副甲状腺腺腫の深層学習による検出(Deep learning-based detection of parathyroid adenoma by 99mTc-MIBI scintigraphy in patients with primary hyperparathyroidism)

    Yoshida Atsushi, Ueda Daiju, Higashiyama Shigeaki, Katayama Yutaka, Matsumoto Toshimasa, Yamanaga Takashi, Miki Yukio, Kawabe Joji

    Annals of Nuclear Medicine   36 ( 5 )   468 - 478   2022年05月( ISSN:0914-7187

     詳細を見る

    副甲状腺機能亢進症患者の早期相ならびに後期相の99mTc-MIBIシンチグラフィー画像から副甲状腺腺腫を検出するため、深層学習(DL)をベースとしたモデルをそれぞれ開発し、検証した。DLモデルの学習データセットには患者192例(男性47例、女性145例、平均年齢64±13歳)から検出された165腺腫を選択し、検証データセットには、患者45例(男性8例、女性37例、平均年齢67±12歳)から検出された30腺腫とした。画像は2010年6月~2019年3月までの期間内に著者等の医療施設で、シンチグラフィーと超音波検査を受けた患者から収集し、試験データセットには、患者44例(男性6例、女性38例、平均年齢67±12歳)から検出された30腺腫を用いて解析した。その結果、初期相モデルによるシンチグラムでは病変をベースとした感度は82%[95%CI 72-92%]、1画像当りの平均偽陽性数(mFPI)は0.44で、後期相モデルではそれぞれ83%[95%CI 73-92%]、0.31であった。これらの所見から、99mTc-MIBIシンチグラフィー画像を用いて、本DLモデルを適用することにより、高感度に副甲状腺腺腫が検出されることが確認された。

  • Development and validation of a deep learning model for detection of breast cancers in mammography from multi-institutional datasets 査読

    Daiju Ueda, Akira Yamamoto, Naoyoshi Onoda, Tsutomu Takashima, Satoru Noda, Shinichiro Kashiwagi, Tamami Morisaki, Shinya Fukumoto, Masatsugu Shiba, Mina Morimura, Taro Shimono, Ken Kageyama, Hiroyuki Tatekawa, Kazuki Murai, Takashi Honjo, Akitoshi Shimazaki, Daijiro Kabata, Yukio Miki

    PLOS ONE   17 ( 3 )   e0265751 - e0265751   2022年03月( ISSN:1932-6203 ( eISSN:1932-6203

     詳細を見る

    担当区分:筆頭著者, 責任著者   掲載種別:研究論文(学術雑誌)  

    Objectives

    The objective of this study was to develop and validate a state-of-the-art, deep learning (DL)-based model for detecting breast cancers on mammography.

    Methods

    Mammograms in a hospital development dataset, a hospital test dataset, and a clinic test dataset were retrospectively collected from January 2006 through December 2017 in Osaka City University Hospital and Medcity21 Clinic. The hospital development dataset and a publicly available digital database for screening mammography (DDSM) dataset were used to train and to validate the RetinaNet, one type of DL-based model, with five-fold cross-validation. The model’s sensitivity and mean false positive indications per image (mFPI) and partial area under the curve (AUC) with 1.0 mFPI for both test datasets were externally assessed with the test datasets.

    Results

    The hospital development dataset, hospital test dataset, clinic test dataset, and DDSM development dataset included a total of 3179 images (1448 malignant images), 491 images (225 malignant images), 2821 images (37 malignant images), and 1457 malignant images, respectively. The proposed model detected all cancers with a 0.45–0.47 mFPI and had partial AUCs of 0.93 in both test datasets.

    Conclusions

    The DL-based model developed for this study was able to detect all breast cancers with a very low mFPI. Our DL-based model achieved the highest performance to date, which might lead to improved diagnosis for breast cancer.

    DOI: 10.1371/journal.pone.0265751

  • Development and Validation of Artificial Intelligence–based Method for Diagnosis of Mitral Regurgitation from Chest Radiographs 査読

    Daiju Ueda, Shoichi Ehara, Akira Yamamoto, Shinichi Iwata, Koji Abo, Shannon L. Walston, Toshimasa Matsumoto, Akitoshi Shimazaki, Minoru Yoshiyama, Yukio Miki

    Radiology: Artificial Intelligence   4 ( 2 )   2022年03月( eISSN:2638-6100

     詳細を見る

    担当区分:筆頭著者, 責任著者   掲載種別:研究論文(学術雑誌)  

    DOI: 10.1148/ryai.210221

  • Artificial intelligence-based detection of aortic stenosis from chest radiographs 査読

    Daiju Ueda, Akira Yamamoto, Shoichi Ehara, Shinichi Iwata, Koji Abo, Shannon L Walston, Toshimasa Matsumoto, Akitoshi Shimazaki, Minoru Yoshiyama, Yukio Miki

    European Heart Journal - Digital Health   3 ( 1 )   20 - 28   2021年12月( eISSN:2634-3916

     詳細を見る

    担当区分:筆頭著者, 責任著者   掲載種別:研究論文(学術雑誌)  

    Abstract

    Aims

    We aimed to develop models to detect aortic stenosis (AS) from chest radiographs—one of the most basic imaging tests—with artificial intelligence.

    Methods and results

    We used 10 433 retrospectively collected digital chest radiographs from 5638 patients to train, validate, and test three deep learning models. Chest radiographs were collected from patients who had also undergone echocardiography at a single institution between July 2016 and May 2019. These were labelled from the corresponding echocardiography assessments as AS-positive or AS-negative. The radiographs were separated on a patient basis into training [8327 images from 4512 patients, mean age 65 ±  (standard deviation) 15 years], validation (1041 images from 563 patients, mean age 65 ± 14 years), and test (1065 images from 563 patients, mean age 65 ± 14 years) datasets. The soft voting-based ensemble of the three developed models had the best overall performance for predicting AS with an area under the receiver operating characteristic curve, sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of 0.83 (95% confidence interval 0.77–0.88), 0.78 (0.67–0.86), 0.71 (0.68–0.73), 0.71 (0.68–0.74), 0.18 (0.14–0.23), and 0.97 (0.96–0.98), respectively, in the validation dataset and 0.83 (0.78–0.88), 0.83 (0.74–0.90), 0.69 (0.66–0.72), 0.71 (0.68–0.73), 0.23 (0.19–0.28), and 0.97 (0.96–0.98), respectively, in the test dataset.

    Conclusion

    Deep learning models using chest radiographs have the potential to differentiate between radiographs of patients with and without AS.

    Lay Summary

    We created artificial intelligence (AI) models using deep learning to identify aortic stenosis (AS) from chest radiographs. Three AI models were developed and evaluated with 10 433 retrospectively collected radiographs and labelled from echocardiography reports. The ensemble AI model could detect AS in a test dataset with an area under the receiver operating characteristic curve of 0.83 (95% confidence interval 0.78–0.88). Since chest radiography is a cost-effective and widely available imaging test, our model can provide an additive resource for the detection of AS.

    DOI: 10.1093/ehjdh/ztab102

    その他URL: https://academic.oup.com/ehjdh/article-pdf/3/1/20/47116703/ztab102.pdf

  • Training, Validation, and Test of Deep Learning Models for Classification of Receptor Expressions in Breast Cancers From Mammograms. 査読

    Daiju Ueda, Akira Yamamoto, Tsutomu Takashima, Naoyoshi Onoda, Satoru Noda, Shinichiro Kashiwagi, Tamami Morisaki, Takashi Honjo, Akitoshi Shimazaki, Yukio Miki

    JCO precision oncology   5 ( 5 )   543 - 551   2021年11月( eISSN:2473-4284

     詳細を見る

    担当区分:筆頭著者, 責任著者   掲載種別:研究論文(学術雑誌)   国際・国内誌:国際誌  

    <sec><title>PURPOSE</title> The molecular subtype of breast cancer is an important component of establishing the appropriate treatment strategy. In clinical practice, molecular subtypes are determined by receptor expressions. In this study, we developed a model using deep learning to determine receptor expressions from mammograms.

    </sec><sec><title>METHODS</title> A developing data set and a test data set were generated from mammograms from the affected side of patients who were pathologically diagnosed with breast cancer from January 2006 through December 2016 and from January 2017 through December 2017, respectively. The developing data sets were used to train and validate the DL-based model with five-fold cross-validation for classifying expression of estrogen receptor (ER), progesterone receptor (PgR), and human epidermal growth factor receptor 2-neu (HER2). The area under the curves (AUCs) for each receptor were evaluated with the independent test data set.

    </sec><sec><title>RESULTS</title> The developing data set and the test data set included 1,448 images (997 ER-positive and 386 ER-negative, 641 PgR-positive and 695 PgR-negative, and 220 HER2-enriched and 1,109 non–HER2-enriched) and 225 images (176 ER-positive and 40 ER-negative, 101 PgR-positive and 117 PgR-negative, and 53 HER2-enriched and 165 non–HER2-enriched), respectively. The AUC of ER-positive or -negative in the test data set was 0.67 (0.58-0.76), the AUC of PgR-positive or -negative was 0.61 (0.53-0.68), and the AUC of HER2-enriched or non–HER2-enriched was 0.75 (0.68-0.82).

    </sec><sec><title>CONCLUSION</title> The DL-based model effectively classified the receptor expressions from the mammograms. Applying the DL-based model to predict breast cancer classification with a noninvasive approach would have additive value to patients.

    </sec>

    DOI: 10.1200/PO.20.00176

    PubMed

  • Artificial intelligence-supported lung cancer detection by multi-institutional readers with multi-vendor chest radiographs: a retrospective clinical validation study. 査読

    Daiju Ueda, Akira Yamamoto, Akitoshi Shimazaki, Shannon Leigh Walston, Toshimasa Matsumoto, Nobuhiro Izumi, Takuma Tsukioka, Hiroaki Komatsu, Hidetoshi Inoue, Daijiro Kabata, Noritoshi Nishiyama, Yukio Miki

    BMC cancer   21 ( 1 )   1120 - 1120   2021年10月( eISSN:1471-2407

     詳細を見る

    担当区分:筆頭著者, 責任著者   掲載種別:研究論文(学術雑誌)   国際・国内誌:国際誌  

    <title>Abstract</title><sec>
    <title>Background</title>
    We investigated the performance improvement of physicians with varying levels of chest radiology experience when using a commercially available artificial intelligence (AI)-based computer-assisted detection (CAD) software to detect lung cancer nodules on chest radiographs from multiple vendors.


    </sec><sec>
    <title>Methods</title>
    Chest radiographs and their corresponding chest CT were retrospectively collected from one institution between July 2017 and June 2018. Two author radiologists annotated pathologically proven lung cancer nodules on the chest radiographs while referencing CT. Eighteen readers (nine general physicians and nine radiologists) from nine institutions interpreted the chest radiographs. The readers interpreted the radiographs alone and then reinterpreted them referencing the CAD output. Suspected nodules were enclosed with a bounding box. These bounding boxes were judged correct if there was significant overlap with the ground truth, specifically, if the intersection over union was 0.3 or higher. The sensitivity, specificity, accuracy, PPV, and NPV of the readers’ assessments were calculated.


    </sec><sec>
    <title>Results</title>
    In total, 312 chest radiographs were collected as a test dataset, including 59 malignant images (59 nodules of lung cancer) and 253 normal images. The model provided a modest boost to the reader’s sensitivity, particularly helping general physicians. The performance of general physicians was improved from 0.47 to 0.60 for sensitivity, from 0.96 to 0.97 for specificity, from 0.87 to 0.90 for accuracy, from 0.75 to 0.82 for PPV, and from 0.89 to 0.91 for NPV while the performance of radiologists was improved from 0.51 to 0.60 for sensitivity, from 0.96 to 0.96 for specificity, from 0.87 to 0.90 for accuracy, from 0.76 to 0.80 for PPV, and from 0.89 to 0.91 for NPV. The overall increase in the ratios of sensitivity, specificity, accuracy, PPV, and NPV were 1.22 (1.14–1.30), 1.00 (1.00–1.01), 1.03 (1.02–1.04), 1.07 (1.03–1.11), and 1.02 (1.01–1.03) by using the CAD, respectively.


    </sec><sec>
    <title>Conclusion</title>
    The AI-based CAD was able to improve the ability of physicians to detect nodules of lung cancer in chest radiographs. The use of a CAD model can indicate regions physicians may have overlooked during their initial assessment.


    </sec>

    DOI: 10.1186/s12885-021-08847-9

    PubMed

    その他URL: https://link.springer.com/article/10.1186/s12885-021-08847-9/fulltext.html

  • Automated classification of coronary atherosclerotic plaque in optical frequency domain imaging based on deep learning. 査読

    Hiroki Shibutani, Kenichi Fujii, Daiju Ueda, Rika Kawakami, Takahiro Imanaka, Kenji Kawai, Koichiro Matsumura, Kenta Hashimoto, Akira Yamamoto, Hiroyuki Hao, Seiichi Hirota, Yukio Miki, Ichiro Shiojima

    Atherosclerosis   328   100 - 105   2021年07月( ISSN:0021-9150

     詳細を見る

    掲載種別:研究論文(学術雑誌)   国際・国内誌:国際誌  

    BACKGROUND AND AIMS: We developed a deep learning (DL) model for automated atherosclerotic plaque categorization using optical frequency domain imaging (OFDI) and performed quantitative and visual evaluations. METHODS: A total of 1103 histological cross-sections from 45 autopsy hearts were examined to compare the ex vivo OFDI scans. The images were segmented and annotated considering four histological categories: pathological intimal thickening (PIT), fibrous cap atheroma (FA), fibrocalcific plaque (FC), and healed erosion/rupture (HER). The DL model was developed based on pyramid scene parsing network (PSPNet). Given an input image, a convolutional neural network (ResNet50) was used as an encoder to generate feature maps of the last convolutional layer. RESULTS: For the quantitative evaluation, the mean F-score and IoU values, which are used to evaluate how close the predicted results are to the ground truth, were used. The validation and test dataset had F-score and IoU values of 0.63, 0.49, and 0.66, 0.52, respectively. For the section-level diagnostic accuracy, the areas under the receiver-operating characteristic curve produced by the DL model for FC, PIT, FA, and HER were 0.91, 0.85, 0.86, and 0.86, respectively, and were comparable to those of an expert observer. CONCLUSIONS: DL semantic segmentation of coronary plaques in OFDI images was used as a tool to automatically categorize atherosclerotic plaques using histological findings as the gold standard. The proposed method can support interventional cardiologists in understanding histological properties of plaques.

    DOI: 10.1016/j.atherosclerosis.2021.06.003

    PubMed

  • Deep Learning-based Angiogram Generation Model for Cerebral Angiography without Misregistration Artifacts. 査読

    Daiju Ueda, Yutaka Katayama, Akira Yamamoto, Tsutomu Ichinose, Hironori Arima, Yusuke Watanabe, Shannon L Walston, Hiroyuki Tatekawa, Hirotaka Takita, Takashi Honjo, Akitoshi Shimazaki, Daijiro Kabata, Takao Ichida, Takeo Goto, Yukio Miki

    Radiology   299 ( 3 )   675 - 681   2021年06月( ISSN:0033-8419 ( eISSN:1527-1315

     詳細を見る

    担当区分:筆頭著者, 責任著者   掲載種別:研究論文(学術雑誌)   国際・国内誌:国際誌  

    Background Digital subtraction angiography (DSA) generates an image by subtracting a mask image from a dynamic angiogram. However, patient movement-caused misregistration artifacts can result in unclear DSA images that interrupt procedures. Purpose To train and to validate a deep learning (DL)-based model to produce DSA-like cerebral angiograms directly from dynamic angiograms and then quantitatively and visually evaluate these angiograms for clinical usefulness. Materials and Methods A retrospective model development and validation study was conducted on dynamic and DSA image pairs consecutively collected from January 2019 through April 2019. Angiograms showing misregistration were first separated per patient by two radiologists and sorted into the misregistration test data set. Nonmisregistration angiograms were divided into development and external test data sets at a ratio of 8:1 per patient. The development data set was divided into training and validation data sets at ratio of 3:1 per patient. The DL model was created by using the training data set, tuned with the validation data set, and then evaluated quantitatively with the external test data set and visually with the misregistration test data set. Quantitative evaluations used the peak signal-to-noise ratio (PSNR) and the structural similarity (SSIM) with mixed liner models. Visual evaluation was conducted by using a numerical rating scale. Results The training, validation, nonmisregistration test, and misregistration test data sets included 10 751, 2784, 1346, and 711 paired images collected from 40 patients (mean age, 62 years ± 11 [standard deviation]; 33 women). In the quantitative evaluation, DL-generated angiograms showed a mean PSNR value of 40.2 dB ± 4.05 and a mean SSIM value of 0.97 ± 0.02, indicating high coincidence with the paired DSA images. In the visual evaluation, the median ratings of the DL-generated angiograms were similar to or better than those of the original DSA images for all 24 sequences. Conclusion The deep learning-based model provided clinically useful cerebral angiograms free from clinically significant artifacts directly from dynamic angiograms. Published under a CC BY 4.0 license. Supplemental material is available for this article.

    DOI: 10.1148/radiol.2021203692

    PubMed

  • Visualizing "featureless" regions on mammograms classified as invasive ductal carcinomas by a deep learning algorithm: the promise of AI support in radiology. 査読

    Daiju Ueda, Akira Yamamoto, Tsutomu Takashima, Naoyoshi Onoda, Satoru Noda, Shinichiro Kashiwagi, Tamami Morisaki, Shinichi Tsutsumi, Takashi Honjo, Akitoshi Shimazaki, Takuya Goto, Yukio Miki

    Japanese journal of radiology   39 ( 4 )   333 - 340   2021年04月( ISSN:1867-1071 ( eISSN:1867-108X

     詳細を見る

    担当区分:筆頭著者, 責任著者   掲載種別:研究論文(学術雑誌)   国際・国内誌:国内誌  

    PURPOSE: To demonstrate how artificial intelligence (AI) can expand radiologists' capacity, we visualized the features of invasive ductal carcinomas (IDCs) that our algorithm, developed and validated for basic pathological classification on mammograms, had focused on. MATERIALS AND METHODS: IDC datasets were built using mammograms from patients diagnosed with IDCs from January 2006 to December 2017. The developing dataset was used to train and validate a VGG-16 deep learning (DL) network. The true positives (TPs) and accuracy of the algorithm were externally evaluated using the test dataset. A visualization technique was applied to the algorithm to determine which malignant findings on mammograms were revealed. RESULTS: The datasets were split into a developing dataset (988 images) and a test dataset (131 images). The proposed algorithm diagnosed 62 TPs with an accuracy of 0.61-0.70. The visualization of features on the mammograms revealed that the tubule forming, solid, and scirrhous types of IDCs exhibited visible features on the surroundings, corners of the masses, and architectural distortions, respectively. CONCLUSION: We successfully showed that features isolated by a DL-based algorithm trained to classify IDCs were indeed those known to be associated with each pathology. Thus, using AI can expand the capacity of radiologists through the discovery of previously unknown findings.

    DOI: 10.1007/s11604-020-01070-9

    PubMed

    その他URL: http://link.springer.com/article/10.1007/s11604-020-01070-9/fulltext.html

  • 深層学習アルゴリズムにより浸潤性乳管癌として分類されたマンモグラム上で「特徴のみられない」領域での可視化 放射線学的検査におけるAI支援の有用性について(Visualizing "featureless" regions on mammograms classified as invasive ductal carcinomas by a deep learning algorithm: the promise of AI support in radiology)

    Ueda Daiju, Yamamoto Akira, Takashima Tsutomu, Onoda Naoyoshi, Noda Satoru, Kashiwagi Shinichiro, Morisaki Tamami, Tsutsumi Shinichi, Honjo Takashi, Shimazaki Akitoshi, Goto Takuya, Miki Yukio

    Japanese Journal of Radiology   39 ( 4 )   333 - 340   2021年04月( ISSN:1867-1071

     詳細を見る

    マンモグラム上での浸潤性乳管癌(IDC)の病理分類のため、深層学習(DL)をベースとしたアルゴリズムの開発と検証に人工知能(AI)を適用し、その有用性について検討した。なお、学習データセットは2006年1月~2016年12月までの期間内に、当院で乳癌と診断された患者529例(年齢25~97歳)から得たマンモグラフィ画像988画像を用いて作成した。VGG-16DLネットワークにより、学習データセットと検証データセットを作成し、テストデータセットには2017年1月~2017年12月までの期間内に、乳癌と診断された当院患者67例(年齢40~92歳)から得た131画像を用いて作成し、アルゴリズムの真陽性と正確さを判定した。可視化技術をアルゴリズムに適用し、マンモグラム上で判明した悪性所見を調査した結果、DLベースのアルゴリズムにより、62画像の真陽性が0.61~0.70の正確さで診断され、マンモグラム上で認められた特徴の可視化により、腺管形成型、充実型および硬性型のIDCが、それぞれ腫瘤の周囲組織や乳腺の歪み、構築の乱れ等、可視化される特徴で描出されることが確認された。以上の所見から、DLベースのアルゴリズムにより、各分類でIDC病理との関連性が指摘されている画像特徴が抽出され、AIの適用により、これまで不明であった所見が明らかにされた。

  • Deep Learning for MR Angiography: Automated Detection of Cerebral Aneurysms. 査読

    Daiju Ueda, Akira Yamamoto, Masataka Nishimori, Taro Shimono, Satoshi Doishita, Akitoshi Shimazaki, Yutaka Katayama, Shinya Fukumoto, Antoine Choppin, Yuki Shimahara, Yukio Miki

    Radiology   290 ( 1 )   187 - 194   2019年01月

     詳細を見る

    担当区分:筆頭著者, 責任著者   掲載種別:研究論文(学術雑誌)   国際・国内誌:国際誌  

    Purpose To develop and evaluate a supportive algorithm using deep learning for detecting cerebral aneurysms at time-of-flight MR angiography to provide a second assessment of images already interpreted by radiologists. Materials and Methods MR images reported by radiologists to contain aneurysms were extracted from four institutions for the period from November 2006 through October 2017. The images were divided into three data sets: training data set, internal test data set, and external test data set. The algorithm was constructed by deep learning with the training data set, and its sensitivity to detect aneurysms in the test data sets was evaluated. To find aneurysms that had been overlooked in the initial reports, two radiologists independently performed a blinded interpretation of aneurysm candidates detected by the algorithm. When there was disagreement, the final diagnosis was made in consensus. The number of newly detected aneurysms was also evaluated. Results The training data set, which provided training and validation data, included 748 aneurysms (mean size, 3.1 mm ± 2.0 [standard deviation]) from 683 examinations; 318 of these examinations were on male patients (mean age, 63 years ± 13) and 365 were on female patients (mean age, 64 years ± 13). Test data were provided by the internal test data set (649 aneurysms [mean size, 4.1 mm ± 3.2] in 521 examinations, including 177 male patients and 344 female patients with mean age of 66 years ± 12 and 67 years ± 13, respectively) and the external test data set (80 aneurysms [mean size, 4.1 mm ± 2.1] in 67 examinations, including 19 male patients and 48 female patients with mean age of 63 years ± 12 and 68 years ± 12, respectively). The sensitivity was 91% (592 of 649) and 93% (74 of 80) for the internal and external test data sets, respectively. The algorithm improved aneurysm detection in the internal and external test data sets by 4.8% (31 of 649) and 13% (10 of 80), respectively, compared with the initial reports. Conclusion A deep learning algorithm detected cerebral aneurysms in radiologic reports with high sensitivity and improved aneurysm detection compared with the initial reports. © RSNA, 2018 See also the editorial by Flanders in this issue.

    DOI: 10.1148/radiol.2018180901

    PubMed

  • Technical and clinical overview of deep learning in radiology 招待 査読

    Daiju Ueda, Akitoshi Shimazaki, Yukio Miki

    Japanese Journal of Radiology   37 ( 1 )   15 - 33   2019年01月( ISSN:1867-1071 ( eISSN:1867-108X

     詳細を見る

    担当区分:筆頭著者, 責任著者   掲載種別:研究論文(学術雑誌)   国際・国内誌:国内誌  

    Deep learning has been applied to clinical applications in not only radiology, but also all other areas of medicine. This review provides a technical and clinical overview of deep learning in radiology. To gain a more practical understanding of deep learning, deep learning techniques are divided into five categories: classification, object detection, semantic segmentation, image processing, and natural language processing. After a brief overview of technical network evolutions, clinical applications based on deep learning are introduced. The clinical applications are then summarized to reveal the features of deep learning, which are highly dependent on training and test datasets. The core technology in deep learning is developed by image classification tasks. In the medical field, radiologists are specialists in such tasks. Using clinical applications based on deep learning would, therefore, be expected to contribute to substantial improvements in radiology. By gaining a better understanding of the features of deep learning, radiologists could be expected to lead medical development.

    DOI: 10.1007/s11604-018-0795-3

    PubMed

    その他URL: http://link.springer.com/content/pdf/10.1007/s11604-018-0795-3.pdf

▼全件表示

書籍等出版物

  • 医療学総論

    大滝 純司, 武田 裕子, 榊原 千秋, 貝沼 茂三郎, 松下 明, 小﨑 真規子, 吉田 絵理子, 磯野 真穂, 棚瀬 裕文, 春田 淳志, 松村 真司, 山田 隆司, 市橋 亮一, 辻 喜久, 志水 太郎, 勝倉 真一, 水澤 桂, 新井 正美, 山本 亮, 平山 陽示, 植田 大樹, 中山 和弘, 近藤 克則, 千嶋 巌, 藤原 聡子, 長嶺 由衣子, 西岡 大輔, 熊倉 陽介, 村岡 亮, 沢田 貴志, 坂井 建雄, 大生 定義, 北村 聖, 廣瀬 清英, 森川 すいめい, 勝井 恵子, 大熊 由紀子

    メヂカルフレンド社  2020年12月  ( ISBN:9784839233693

     詳細を見る

    総ページ数:xi, 277p  

    CiNii Books

MISC(その他記事)

  • 【診断・治療のための意思決定AI】人工知能による画像変換技術の神経放射線領域への応用について

    田北 大昂, 植田 大樹

    医用画像情報学会雑誌   40 ( 4 )   66 - 74   2023年12月( ISSN:0910-1543

     詳細を見る

    急速な人工知能(AI)の進化により、AI技術の医用画像への応用が急速に広がりつつあり、なかでも画像変換技術が注目を集めている。画像変換技術は、異なる画像モダリティ間での変換やアーチファクトの除去など幅広い応用が可能であり、画像変換モデルを用いてMRI画像からPETを生成したり、アーチファクトのある画像からアーチファクトのない画像へ変換することで、診断精度の向上や治療計画の最適化へ貢献する可能性がある。本稿では、筆者らが発表した画像変換技術を神経放射線科領域に応用した、「MRIを用いた疑似メチオニンPETの生成」「ミスレジストレーションアーチファクトのないDSAの生成」の2論文について紹介した。前者の疑似メチオニンPETは、神経膠腫のグレード分類や予後予測に実際のメチオニンPETと同等の付加価値があることが示された。後者の疑似DSAは、ミスレジストレーションアーチファクトを完全に取り除くことが可能であることが示された。

  • 【動画対応DRシステムを極める 高精度の診断・治療を支える技術の動向と臨床の最前線】動画対応DRシステムの活用と期待! エキスパートの目線 IVR領域におけるAIの可能性

    植田 大樹

    INNERVISION   37 ( 12 )   32 - 34   2022年11月( ISSN:0913-8919

     詳細を見る

    放射線分野における人工知能(AI)応用の研究数は飛躍的に増加している一方で,それらの多くは画像診断分野のものである。多くの日本の大学においては,画像診断分野とインターベンショナルラジオロジー(以下,IVR)分野は表裏一体となり,共に成長してきた。AI応用を得意としたわれわれの研究室も,画像診断分野へのAI応用だけではなく,IVR領域へのAI応用を意識するようになり,ようやく次世代のモーションアーチファクト低減技術に関して,AIを応用する研究を2本発表できたので,それらを紹介したい。いずれも同じ技術(pix2pixという画像変換技術)の論文であり,それを頭部領域,腹部領域に応用した点で異なっている。(著者抄録)

  • MRAによる脳動脈瘤診断補助AI—ROUTINE CLINICAL MRI 2022 BOOK

    植田 大樹

    映像情報medical : a monthly journal of medical imaging and information   53 ( 14 )   82 - 86   2021年12月( ISSN:1346-1354 ( ISBN:9784860283681

  • MRAによる脳動脈瘤診断補助AI

    植田 大樹

    映像情報Medical   53 ( 14 )   82 - 86   2021年12月( ISSN:1346-1354

  • 医療AIトップランナーズ(第2回) 放射線科医とAI研究 開発にあたる若き研究者

    島原 佑基, 植田 大樹

    映像情報Medical   52 ( 11 )   4 - 9   2020年10月( ISSN:1346-1354

  • 【AI+医用画像-現場視点で解くその変革】臨床進展に資する医用AI活用の要訣 人工知能による画像診断支援から考えるAI時代の新医療

    植田 大樹

    新医療   47 ( 9 )   50 - 53   2020年09月( ISSN:0910-7991

     詳細を見る

    2019年9月17日、医薬品医療機器総合機構(PMDA)は、大阪市立大学大学院医学研究科放射線診断学・IVR学教室(以下、当教室)が共同開発したmagnetic resonance angiography(MRA)からの脳動脈瘤補助診断プログラム(EIRL Aneurysm)を、人工知能(artificial intelligence:AI)の中でも特にディープラーニングを用いた医療機器として、日本で初めて医療機器として承認した。これは、まさに医療分野におけるAI時代の幕開けといえる。本稿では、「AI時代の新医療」について、AIと人間の認知の差異の観点を軸にしつつ、当教室でのAI研究の実例を交えて考えていきたい。(著者抄録)

  • 人工知能による画像診断支援 概念から応用まで

    植田 大樹

    医用画像情報学会雑誌   37 ( 2 )   11 - 20   2020年06月( ISSN:0910-1543

     詳細を見る

    近年、AIの放射線分野への応用が進んでいる。画像診断支援分野におけるAI分野の研究を大別すると、分類、検出、セグメンテーション、画像処理の4つとなる。これらそれぞれの分野を筆者らの研究を交えつつ紹介した。さらに、ディープラーニングで最近注目されている技術、および、AIと医療者の認知の違いについての実験を紹介し、来たるAI時代の医療者の役割について考察した。

  • 【Post SVR時代の門脈圧亢進症】HCV SVR後の門脈圧亢進症診断 CTによる門脈圧亢進症の画像診断

    山本 晃, 打田 佐和子, 城後 篤志, 影山 健, 寒川 悦次, 植田 大樹, 河田 則文, 三木 幸雄

    肝胆膵   80 ( 5 )   769 - 779   2020年05月( ISSN:0389-4991

  • Post SVR時代の門脈圧亢進症 HCV SVR後の門脈圧亢進症診断 CTによる門脈圧亢進症の画像診断

    山本晃, 打田佐和子, 城後篤志, 影山健, 寒川悦次, 植田大樹, 河田則文, 三木幸雄

    肝胆膵   80 ( 5 )   769 - 779   2020年( ISSN:0389-4991

     詳細を見る

  • 人工知能による画像診断支援: 概念から応用まで

    植田大樹

    医用画像情報学会雑誌(Web)   37 ( 2 )   2020年( ISSN:1880-4977

     詳細を見る

  • 人工知能による画像診断支援から考えるAI時代の新医療

    植田大樹

    月刊新医療   47 ( 9 )   50 - 53   2020年( ISSN:0910-7991

     詳細を見る

    2019年9月17日、医薬品医療機器総合機構(PMDA)は、大阪市立大学大学院医学研究科放射線診断学・IVR学教室(以下、当教室)が共同開発したmagnetic resonance angiography(MRA)からの脳動脈瘤補助診断プログラム(EIRL Aneurysm)を、人工知能(artificial intelligence:AI)の中でも特にディープラーニングを用いた医療機器として、日本で初めて医療機器として承認した。これは、まさに医療分野におけるAI時代の幕開けといえる。本稿では、「AI時代の新医療」について、AIと人間の認知の差異の観点を軸にしつつ、当教室でのAI研究の実例を交えて考えていきたい。(著者抄録)

    J-GLOBAL

  • Deep Learning for Detecting Lung Cancers in Chest Radiographs

    Shimazaki Akitoshi, Ueda Daiju, Honjo Takashi, Okamoto Takayuki, Yamamoto Akira, Nishiyama Noritoshi, Izumi Nobuhiro, Tsukioka Takuma, Shimahara Yuki, Miki Yukio

    日本医学放射線学会学術集会抄録集   78回   S216 - S216   2019年02月( ISSN:0048-0428 ( eISSN:1347-7951

  • Evaluation of Calcifications in Mammograms Adopted Super Resolution via Deep Learning

    Honjo Takashi, Katayama Yutaka, Ueda Daiju, Shimazaki Akitoshi, Yamamoto Akira, Miki Yukio

    日本医学放射線学会学術集会抄録集   78回   S220 - S221   2019年02月( ISSN:0048-0428 ( eISSN:1347-7951

  • マンモグラフィ×AIの拓く医療

    植田大樹

    日本乳癌検診学会学術総会プログラム抄録集   29th   71 - 71   2019年

     詳細を見る

    掲載種別:研究発表ペーパー・要旨(全国大会,その他学術会議)  

    J-GLOBAL

  • マンモグラフィに対する超解像を用いた高解像度化

    片山豊, 植田大樹, 島崎覚理, 本条隆, 岸本健治, 市田隆雄, 三木幸雄

    日本放射線技術学会総会学術大会予稿集   75th   266 - 267   2019年( ISSN:1884-7846

     詳細を見る

▼全件表示

講演・口頭発表等

▼全件表示

科研費獲得実績

  • AIによる胸部レントゲン年齢の予後予測能の多施設検証

    若手研究  2025年

  • AIによる胸部レントゲン年齢の予後予測能の多施設検証

    若手研究  2024年

  • AIを用いたCTからの門脈圧亢進症の診断プログラムの開発-無侵襲診断へ

    基盤研究(C)  2024年