Updated on 2025/05/25

写真a

 
NAKAGAWA KEI
 
Organization
Graduate School of Business Department of Global Business Professor
School of Business Department of Business
Title
Professor
Affiliation
Institute of Business
Contact information
メールアドレス
Affiliation campus
Sugimoto Campus

Position

  • Graduate School of Business Department of Global Business 

    Professor  2025.04 - Now

  • School of Business Department of Business 

    Professor  2025.04 - Now

Degree

  • Doctor of Philosophy in Business Administration ( University of Tsukuba )

  • Master of Business Administration ( University of Tsukuba )

  • Bachelor of Economics ( Kyoto University )

Research Areas

  • Humanities & Social Sciences / Money and finance

  • Informatics / Intelligent informatics

  • Informatics / Soft computing

Research Interests

  • 金融工学

  • 金融情報学

  • ESG

  • Mathematical Finance

  • Artificial Intelligence

  • Machine Learning

Research subject summary

  • ファイナンスを中心とした経営学とAI/機械学習を中心とした情報学の複合領域をテーマに研究を行っています。私自身のこれまでの実務的・学術的な経験を踏まえ、学術的な探求と実務的な応用の双方を目標としています。

Professional Memberships

▼display all

Committee Memberships (off-campus)

  • 主幹事   人工知能学会金融情報学研究会  

    2024 - Now 

  • Organizer   International Conference on Computational and Data Sciences in Economics and Finance (CDEF)  

    2023 - Now 

  • 和文誌編集委員   日本金融・証券計量・工学学会(JAFEE)  

    2023 - Now 

  • 幹事   人工知能学会金融情報学研究会  

    2020 - 2023 

Awards

  • Competitive Paper Award

    Tatsuyoshi Ogawa, Kei Nakagawa, Kokolo Ikeda

    2024.07   IIAI AAI   Optimal execution strategy using Deep Q-Network with heuristics policy

  • 優秀論文賞

    高野 海斗, 中川 慧, 藤本 悠吾

    2024   人工知能学会金融情報学研究会   ChatGPTを活用した運用報告書の市況コメントの自動生成

  • IIAI AAI Competitive Paper Award

    Tatsuyoshi Ogawa, Kei Nakagawa, Kokolo Ikeda

    2024   IIAI International Congress on Advanced Applied Informatics   Optimal execution strategy using Deep Q-Network with heuristics policy

  • 人工知能学会 研究会優秀賞

    中川 慧, 南 賢太郎

    2024   人工知能学会   単調回帰を用いた一般化トレンド・ファクター:暗号資産市場への応用

  • Outstanding Paper Award

    Tatsuki Masuda, Kei Nakagawa

    2023.07   IIAI AAI   Predicting Financial Asset Returns with Factor and Lead-Lag Relationships: Ridge Regression with Lagged Penalty

  • 委員特別賞

    中川 慧, 林 晃平, 藤本 悠吾

    2023.03   言語処理学会第29回年次大会   連続時間フラクショナル・トピックモデル

  • IIAI AAI Outstanding Paper Award

    Tatsuki Masuda and Kei Nakagawa

    2023   IIAI International Congress on Advanced Applied Informatics   Predicting Financial Asset Returns with Factor and Lead-Lag Relationships: Ridge Regression with Lagged Penalty

  • 第29回年次大会(NLP2023) 委員特別賞

    中川 慧, 林 晃平, 藤本 悠吾

    2023   言語処理学会   連続時間フラクショナル・トピックモデル

  • 人工知能学会 研究会優秀賞

    藤本 悠吾, 中川 慧, 今城 健太郎,南 賢太郎

    2023   人工知能学会   不確実性を考慮したトレーダー・カンパニー法による解釈可能な株価予測

  • Honorable Mention Award

    藤島圭吾, 中川慧

    2022.07   IIAI AAI   Multiple Portfolio Blending Strategy with Thompson Sampling

  • Outstanding Paper Award

    Kei Nakagawa, Shingo Sashida, Hiroki Sakaji

    2022.07   IIAI AAI   Investment Strategy via Lead Lag Effect using Economic Causal Chain and SSESTM Model

  • IIAI AAI Outstanding Paper Award

    Kei Nakagawa, Shingo Sashida, Hiroki Sakaji

    2022   IIAI International Congress on Advanced Applied Informatics   Investment Strategy via Lead Lag Effect using Economic Causal Chain and SSESTM Model

  • Honorable Paper Award

    Keigo Fujishima, Kei Nakagawa

    2022   IIAI International Congress on Advanced Applied Informatics   Multiple Portfolio Blending Strategy with Thompson Sampling

  • 人工知能学会 研究会優秀賞

    今木 翔太, 今城 健太郎, 伊藤 克哉, 南 賢太郎, 中川 慧

    2021   人工知能学会   効率的なDeep Hedgingのためのニューラルネットワーク構造の提案

  • JAFEE若手コンペティション優秀講演賞

    野間修平, 中川慧

    2020.08   JAFEE   解釈性を持つリスクファクター構成手法に関する研究

  • ビジネス科学研究科長賞

    中川慧

    2020.03   筑波大学大学院  

  • 学長賞

    中川慧

    2020.03   筑波大学大学院  

  • JAFEE大会コンペティション優秀講演賞

    野間修平、中川慧

    2020   日本金融・証券計量・工学学会(JAFEE)   解釈性を持つリスクファクター構成手法に関する研究

  • 人工知能学会 研究会優秀賞

    中川 慧, 角屋 貴則, 内山 祐介

    2019   人工知能学会   金融時系列のための深層t過程回帰モデル

  • 日本FP学会懸賞論文 優秀賞

    中川慧

    2018   日本FP学会   ブラック・リッターマン法を用いたリスクベース・ポートフォリオの拡張

  • テクニカルアナリストジャーナル懸賞論文 佳作

    中川慧、今村光良

    2016   日本テクニカルアナリスト協会   深層学習を用いたカオス時系列解析によるテクニカル分析

  • テクニカルアナリストジャーナル懸賞論文 優秀賞

    中川慧

    2015   日本テクニカルアナリスト協会   非線形共和分関係に基づくペアトレード戦略

▼display all

Job Career (off-campus)

  • 株式会社H&Y   技術顧問

    2025.05 - Now

  • 株式会社MONO Investment   技術顧問

    2025.05 - Now

  • Osaka Metropolitan University   Graduate School of Business   Professer

    2025.04 - Now

  • Osaka Metropolitan University   Visiting Associate Professor

    2024.05 - 2025.03

  • Nomura Asset Management Co., Ltd.

    2018.02 - 2025.03

  • Sumitomo Mitsui Asset Management Company, Limited

    2014.11 - 2018.01

  • Nissay Asset Management Corporation

    2012.04 - 2014.10

▼display all

Education

  • University of Tsukuba   Doctor's Course   Graduated/Completed

    2016.04 - 2020.01

  • University of Tsukuba   Master's Course   Graduated/Completed

    2013.04 - 2015.03

  • Kyoto University   Bachelor's Course   Graduated/Completed

    2008.04 - 2012.03

Papers

  • Stochastic ESG scores and nonpecuniary ESG preferences: An extension to CAPM Reviewed

    Kei Nakagawa, Keisuke Morita, Ryuta Sakemoto

    Finance Research Letters   2025.06

     More details

    Authorship:Lead author, Corresponding author   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.frl.2025.107179

  • Portfolio optimization using deep learning with risk aversion utility function Reviewed

    Kenji Kubo , Kei Nakagawa

    Finance Research Letters   74   2025.03( ISSN:15446123

     More details

    Authorship:Last author, Corresponding author   Publishing type:Research paper (scientific journal)   Kind of work:Joint Work   International / domestic magazine:International journal  

    DOI: 10.1016/j.frl.2025.106761

  • Generalizing Risk Parity Portfolios with Weighted Tsallis Entropy Regularization

    NAKAGAWA Kei, TSUCHIYA Taira

    JSAI Technical Report, Type 2 SIG   2025 ( FIN-034 )   48 - 55   2025.02( eISSN:24365556

     More details

    Authorship:Lead author, Corresponding author   Publishing type:Research paper (conference, symposium, etc.)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    DOI: 10.11517/jsaisigtwo.2025.fin-034_48

  • Quantitative evaluation and application of industry classification using machine learning

    YAKABI Kiyoshi, NAKAGAWA Kei

    JSAI Technical Report, Type 2 SIG   2025 ( FIN-034 )   138 - 144   2025.02( eISSN:24365556

     More details

    Authorship:Last author   Publishing type:Research paper (conference, symposium, etc.)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    DOI: 10.11517/jsaisigtwo.2025.fin-034_138

  • Comparative analysis of stock price and earnings signals in cross-sectional forecasting using machine learning methods

    ODA Naoki, NAKAGAWA Kei, HOSHINO Takahiro

    JSAI Technical Report, Type 2 SIG   2025 ( FIN-034 )   145 - 151   2025.02( eISSN:24365556

     More details

    Publishing type:Research paper (conference, symposium, etc.)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    DOI: 10.11517/jsaisigtwo.2025.fin-034_145

  • Dynamic Portfolio Optimization Using Deep Learning Models with Multi-step Utility Loss

    KUBO Kenji, NAKAGAWA Kei

    JSAI Technical Report, Type 2 SIG   2025 ( FIN-034 )   152 - 158   2025.02( eISSN:24365556

     More details

    Authorship:Last author   Publishing type:Research paper (conference, symposium, etc.)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    DOI: 10.11517/jsaisigtwo.2025.fin-034_152

  • Empirical study of the diversification effect of art assets

    MORITA Rika, MACHIDA Natsumi, YAMAMOTO Kosuke, NAKAGAWA Kei, HOSHINO Takahiro

    JSAI Technical Report, Type 2 SIG   2025 ( FIN-034 )   90 - 97   2025.02( eISSN:24365556

     More details

    Publishing type:Research paper (conference, symposium, etc.)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    DOI: 10.11517/jsaisigtwo.2025.fin-034_90

  • A Multi-agent Market Model Can Explain the Impact of AI Traders in Financial Markets–A New Microfoundations of GARCH Model Reviewed

    Nakagawa K.

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)   15395 LNAI   97 - 113   2025( ISSN:03029743 ( ISBN:9783031773662

     More details

    Authorship:Lead author, Corresponding author   Publishing type:Research paper (international conference proceedings)   Kind of work:Joint Work   International / domestic magazine:International journal  

    DOI: 10.1007/978-3-031-77367-9_9

  • An efficient machine learning method for obtaining ESG information from corporate websites

    WATANABE Takumi, TANABE Tomoya, SATO Ryoga, MIYAMURA Hiroyuki, TAKANO Kaito, NAKAGAWA Kei

    JSAI Technical Report, Type 2 SIG   2024 ( FIN-033 )   33 - 40   2024.10( eISSN:24365556

     More details

    Publishing type:Research paper (conference, symposium, etc.)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    <p>本研究では、企業のウェブサイト上のESG情報の効率的な収集手法を提案する。ESG情報は投資判断や企業評価において極めて重要な情報であるが、ESG情報自体が多岐に渡り、企業のHPや統合報告書等、多くの場所に分散している。そのため、ESG情報の収集には多くの時間が必要になるとともに、包括的な収集が困難であるという課題が存在する。そこで、本研究では機械学習を活用し、当該課題に対処するための次の二つの問題に取り組む。まず、企業HPのURLからESG情報の存在の有無を二値分類する問題に取り組む。次に、ESG情報が存在すると判定されたウェブサイト本文から、実際にESG情報が含まれるかを判定する問題に取り組む。前者の二値分類問題においてはF1スコア0.924を達成し、後者の本文判定問題においてはF1スコア0.986を達成した。これらの結果は、機械学習を用いることでESG情報の効率的かつ広範な取得が可能であることを示している。</p>

    DOI: 10.11517/jsaisigtwo.2024.fin-033_33

  • Automatic Generation and Tuning Method of Definition Statements for Binary Classification of Financial Texts Using Large Language Models

    TAKANO Kaito, NAKAGAWA Kei, FUJIMOTO Yugo

    JSAI Technical Report, Type 2 SIG   2024 ( FIN-033 )   155 - 162   2024.10( eISSN:24365556

     More details

    Publishing type:Research paper (conference, symposium, etc.)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    <p>Text classification using large language models (LLMs) often has low interpretability and is hard to adjust manually. On the other hand, zero-shot learning, which uses definition statements in LLMs for classification, is more interpretable but creating good definition statements is a challenging task. Therfore, we propose a method to automatically generate definition statements using LLMs to improve classification accuracy and interpretability in (binary) text classification. The proposed method first randomly splits the labeled data and generates (initial) definition statements based on sampled data. Then, it classifies the labeled data using these statements and updates them by inputting misclassified data back into LLMs, repeating this process to improve the definition statements. Experiments with real-world texts show that the proposed method performs well compared to fine-tuned BERT model and LLM few-shot learning and creates appropriate definition sentences.</p>

    DOI: 10.11517/jsaisigtwo.2024.fin-033_155

  • Predicting Earnings Change Using Machine Learning with Data from Japanese Companies

    YAKABI Kiyoshi, KUROKI Yutaka, NAKAGAWA Kei

    JSAI Technical Report, Type 2 SIG   2024 ( FIN-033 )   68 - 75   2024.10( eISSN:24365556

     More details

    Authorship:Last author   Publishing type:Research paper (conference, symposium, etc.)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    <p>本研究では、Chen et.al (2022) の手法に基づいて、日本企業の財務データを用いて、機械学習手法による次期利益の変化方向の予測可能性を検証する。先行研究では、米国市場において機械学習手法がアナリスト予測を上回る予測パフォーマンスを示しているが、本研究ではこの知見の日本市場への適用可能性を探る。本研究では、先行研究同様に機械学習手法として非線形性および相互作用を捉えることのできる決定木系のアルゴリズムを適用し、予測モデルを構築する。予測パフォーマンスの評価には、ROC曲線化面積と、予測に基づくヘッジ・ポートフォリオの異常リターンを用いる。また、ロジスティック回帰モデルや経営者予想との比較を行い、機械学習手法の優位性を検証する。本研究の貢献は、(1)機械学習手法が捉える利益予測における財務情報の非線形性・相互作用の解明、(2)日本市場での会計情報の利益に対する予測力の再評価、(3)効率的市場仮説に対する実証的証拠の提示、の3点にある。これらの知見は、会計情報の役割に関する理論的な理解を深め、日本市場の投資実務や企業価値評価に新たな視座を提供する。</p>

    DOI: 10.11517/jsaisigtwo.2024.fin-033_68

  • Building a Question-Answering Model Using Accounting Standards Graphs Experiments Using Revenue Recognition Standards

    MASUDA Tatsuki, NAKAGAWA Kei, HOSHINO Takahiro

    JSAI Technical Report, Type 2 SIG   2024 ( FIN-033 )   53 - 60   2024.10( eISSN:24365556

     More details

    Publishing type:Research paper (conference, symposium, etc.)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    <p>本研究は、複雑な会計基準に対する質問応答タスクに対応するための手法を提案する。会計基準は多くの条文と参照関係を含み、その複雑さゆえに会計専門家以外には理解が困難であるという問題がある。また、従来の質問応答モデルでは、会計基準の複雑な参照関係を十分に考慮することが難しく、そのため正確な回答を生成することが困難であった。そこで本研究では、会計基準の参照関係を効果的に活用し、質問応答モデルの性能を向上させる。具体的には、会計基準の参照関係をグラフ化し、質問応答モデルに組み込む手法を提案する。収益認識に関する会計基準を使用しグラフを構築し、会計基準の設例や公認会計士試験の論文式問題を対象に提案手法を事前学習モデルやRAGモデルとの比較実験を行った。結果、会計基準グラフの利用が専門的な質問応答タスクでの性能向上に効果的であることを示した。このアプローチは、他の複雑な法規や規制にも適用可能である。</p>

    DOI: 10.11517/jsaisigtwo.2024.fin-033_53

  • Portfolio Optimization Using Deep Learning with Risk Aversion Utility Function

    KUBO Kenji, NAKAGAWA Kei

    JSAI Technical Report, Type 2 SIG   2024 ( FIN-033 )   169 - 176   2024.10( eISSN:24365556

     More details

    Authorship:Last author, Corresponding author   Publishing type:Research paper (conference, symposium, etc.)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    <p>本論文では、深層学習~(DL)を用いたポートフォリオ最適化に取り組む。DLにより、従来のCAPMやファクターモデルでは扱えなかったリターンの非線形性をモデルに組み込むことが可能となった。しかし、DLを用いたポートフォリオ構築においても、リスクとリターンのトレードオフを最適化することが重要であり、このトレードオフを考慮するためにSharpe lossという損失関数が提案された。この方法は、実証的に有用であるが、Sharpe lossには理論的問題がある。まず、損益が負の値を取る場合、その解釈が難しく、非直感的なポートフォリオを構築すること、次に確率的勾配降下法を用いた際に、勾配が不偏推定量とならないことである。そこで本論文では、DLを用いたポートフォリオ最適化のためのリスク回避型効用関数を用いた新しい損失関数を提案する。リスク回避型効用関数は損益が負の場合でも解釈が容易であり、また、勾配が不偏推定量となるため、Sharpe lossが抱えていた問題を回避することができる。加えて、DLからの出力をベースライン戦略のウエイトから差分とすることで、より優れたポートフォリオが構築可能であることを示す。提案手法の有効性を確認するためにS\&P500の過去データを用いた実験を行った。提案手法がSharpe ratioを含めたいくつかの指標でSharpe lossを用いた場合よりも良いパフォーマンスが得られることを示す。</p>

    DOI: 10.11517/jsaisigtwo.2024.fin-033_169

  • Mean-Variance Efficient Reinforcement Learning

    KATO Masahiro, NAKAGAWA Kei, ABE Kenshi, MORIMURA Tetsuro, BABA Kentaro

    JSAI Technical Report, Type 2 SIG   2024 ( FIN-033 )   177 - 184   2024.10( eISSN:24365556

     More details

    Publishing type:Research paper (conference, symposium, etc.)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    <p>This study investigates the mean-variance (MV) trade- off in reinforcement learning (RL), an instance of sequential decision-making under uncertainty. Our objective is to obtain MV-efficient policies, whose means and variances are located on the Pareto efficient frontier with respect to the MV trade- off; under this condition, any increase in the expected reward would necessitate a corresponding increase in variance, and vice versa. To this end, we propose a method that trains our policy to maximize the expected quadratic utility, defined as a weighted sum of the first and second moments of the rewards obtained through our policy. We subsequently demonstrate that the maximizer indeed qualifies as an MV-efficient policy. Previous studies that employ constrained optimization to address the MV trade-off have encountered computational challenges. However, our approach is more computationally efficient as it eliminates the need for gradient estimation of variance, a contributing factor to the double sampling issue observed in existing methodologies. Through experimentation, we validate the efficacy of our approach.</p>

    DOI: 10.11517/jsaisigtwo.2024.fin-033_177

  • Estimating theme park visitor numbers and sales forecasts using SAR satellite images

    ICHIKAWA Yoshihiko, DATE Hiroto, NASUDA Tetsuya, TAKANO Kaito, NAKAGAWA Kei

    JSAI Technical Report, Type 2 SIG   2024 ( FIN-033 )   61 - 67   2024.10( eISSN:24365556

     More details

    Authorship:Last author   Publishing type:Research paper (conference, symposium, etc.)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    <p>本研究では、SAR(合成開口レーダー)衛星画像を用いて、テーマパークの来場者数を推定する手法を検討する。テーマパークの来場者数は、特に投資家やアナリストにとって、企業の業績や消費者需要を評価するための重要な指標である。来場者数データは、収益予測や投資判断に直結するため、リアルタイムな情報が求められているが、一般には公開されておらずデータの収集が困難である。そこで本研究は、SAR衛星画像の高解像度と全天候対応の特性を活かし、ケーススタディとして東京ディズニーリゾートの敷地内における駐車場を解析し、来場者数を推定する。また、公表されている来場者数や売上高などとの比較を行い、推定値の有効性を分析する。</p>

    DOI: 10.11517/jsaisigtwo.2024.fin-033_61

  • Commodity sectors and factor investment strategies Reviewed

    Nakagawa K.

    International Review of Financial Analysis   95   2024.10( ISSN:10575219

     More details

    Authorship:Lead author   Publishing type:Research paper (scientific journal)   Kind of work:Joint Work   International / domestic magazine:International journal  

    DOI: 10.1016/j.irfa.2024.103493

  • Analysis of Investment Behavior of Individual Investors in the FX Market: Influence of FOMC and Beige Book Information Reviewed

    Moeko Asano, Yoshihiko Ichikawa, Kei Nakagawa, Kaito Takano

    2024 16th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)   7   373 - 378   2024.07

     More details

    Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1109/iiai-aai63651.2024.00075

  • A New Initial Distribution for Quantum Generative Adversarial Networks to Load Probability Distributions

    Sano Yuichi, Koga Ryosuke, Abe Masaya, Nakagawa Kei

    2024.07

     More details

    Kind of work:Joint Work  

    <title>Abstract</title> <p>Quantum computers are gaining attention for their ability to solve certain problems faster than classical computers, and one example is the quantum expectation estimation algorithm that accelerates the widely-used Monte Carlo method in fields such as finance. A previous study has shown that quantum generative adversarial networks(qGANs), a quantum circuit version of generative adversarial networks(GANs), can generate the probability distribution necessary for the quantum expectation estimation algorithm in shallow quantum circuits. However, a previous study has also suggested that the convergence speed and accuracy of the generated distribution can vary greatly depending on the initial distribution of qGANs' generator. In particular, the effectiveness of using a normal distribution as the initial distribution has been claimed, but it requires a deep quantum circuit, which may lose the advantage of qGANs. Therefore, in this study, we propose a novel method for generating an initial distribution that improves the learning efficiency of qGANs. Our method uses the classical process of {\it label replacement} to generate various probability distributions in shallow quantum circuits. We demonstrate that our proposed method can generate the log-normal distribution, which is pivotal in financial engineering, as well as the triangular distribution and the bimodal distribution, more efficiently than current methods. Additionally, we show that the initial distribution proposed in our research is related to the problem of determining the initial weights for qGANs.</p>

    DOI: 10.21203/rs.3.rs-4590355/v1

  • Generation of Market Comments and Outlooks in Mutual Fund Disclosure Documents Using LLM Reviewed

    Takano Kaito, Nakagawa Kei, Fujimoto Yugo

    Transactions of the Japanese Society for Artificial Intelligence   39 ( 4 )   FIN23-B_1 - 13   2024.07( ISSN:13460714 ( eISSN:13468030

     More details

    Publishing type:Research paper (scientific journal)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    <p>The number of funds remains high and the amount of economic and social news information increases rapidly, increasing the burden on asset management companies in preparing disclosure documents. These disclosure documents are important for mutual fund holders, and in particular, market comments and outlooks are essential to understanding the current and future investment environment. Writing these documents takes a lot of time, adding to the workload of asset management companies. Recently, advancements in Large Language Models (LLMs) have expanded their use in various tasks. However, LLMs struggle to easily learn new information due to computational resources and costs, making it challenging to generate market comments and outlooks reflecting the latest economic data. Retrieval Augmented Generation (RAG) is a solution to this problem. In this study, we use ChatGPT, a type of LLM, to develop a tool that automatically generates market comments and outlooks. This tool can incorporate the latest news information and generate comments based on the information while suppressing hallucinations. We propose two methods: few-shot learning, which uses past market comments as examples, and zero-shot learning, which does not use past market comments. We collected actual market comments from publicly available mutual fund disclosure documents and conducted both qualitative and quantitative evaluations in comparison with the generated comments.</p>

    DOI: 10.1527/tjsai.39-4_fin23-b

  • Graph Algorithms using Discrete Curvature via Optimal Transport Theory and Their Application to the Financial Market Reviewed

    Akamatsu Tomoya, Nakagawa Kei, Yamada Taiki

    Transactions of the Japanese Society for Artificial Intelligence   39 ( 4 )   FIN23-K_1 - 9   2024.07( ISSN:13460714 ( eISSN:13468030

     More details

    Publishing type:Research paper (scientific journal)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    <p>In network analysis, traditional centrality measures are now complemented by the concept of curvature from differential geometry, which offers a refined understanding of network structures. Ricci curvature, an indicator of space distortion, is well-studied within the field of Riemannian geometry but has recently been adapted to discrete networks through the development of discrete curvature. Among the forms of discrete curvature, LLY Ricci curvature and Forman Ricci curvature are notable. LLY Ricci curvature, grounded in optimal transport theory, correlates with link density and clustering coefficients, offering a means to identify globally central nodes. Despite its effectiveness in diverse domains, including financial networks, its complex nature prevents its application to large networks due to computational constraints. On the other hand, Forman Ricci curvature, simpler and computationally more efficient due to its reliance on degree centrality, proves useful in identifying network bottlenecks but is limited by its sole dependence on network degree, constraining its applicability in constructing intricate graph algorithms. Therefore, this paper introduces a new graph algorithm that integrates both LLY and Forman Ricci curvatures, aiming to leverage their strengths while mitigating their limitations. To empirically validate the practical applicability, we applied our method to the financial market for stock screening, a critical process for investors. We conducted an empirical analysis using a well-known financial benchmark dataset to examine the performance of our proposed algorithm from a risk management perspective. The empirical results suggest that the stocks selected using our method are a robust set that maintains low correlation under normal conditions and responds effectively to events such as financial crises.</p>

    DOI: 10.1527/tjsai.39-4_fin23-k

  • Automatic Evaluation of Integrated Reports with Interpretability Reviewed

    Kawamura Kohei, Sakai Hiroyuki, Enami Kengo, Takano Kaito, Nakagawa Kei

    Transactions of the Japanese Society for Artificial Intelligence   39 ( 4 )   FIN23-E_1 - 14   2024.07( ISSN:13460714 ( eISSN:13468030

     More details

    Authorship:Last author   Publishing type:Research paper (scientific journal)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    <p>In this paper, we propose a method for automatically evaluating integrated reports in terms of interpretability using a deep learning model with hierarchical attention to two types of information: sentences and pages. Specifically, we newly constructed a dataset labeled with investor evaluation labels based on the external evaluation of integrated reports by the GPIF. In addition, we proposed a deep learning model with a Bi-LSTM layer for learning page order and two attention layers for sentences and pages. In the evaluation experiments, the proposed model achieved a classification performance of F1-score 0.847 for integrated reports of companies that do not appear during training. In the discussion, by visualizing the weights of the attention layer of the model, we confirmed that the information of interest in the model is generally consistent with the evaluation criteria of investors. In addition, we examined the practicality of the proposed method by taking into account the bias of the dataset, and showed that the proposed method is able to automatically evaluate both learned and unknown integrated reports of companies.</p>

    DOI: 10.1527/tjsai.39-4_fin23-e

  • Analysis of Hedging Strategies for Multiple Options in the BTC Market Using Deep Smoothing and Deep Hedging Reviewed

    Fujiwara Masaki, Nakakomi Tomoki, Kako Kaisei, Horikawa Hiroaki, Nakagawa Kei

    Transactions of the Japanese Society for Artificial Intelligence   39 ( 4 )   FIN23-H_1 - 9   2024.07( ISSN:13460714 ( eISSN:13468030

     More details

    Authorship:Last author   Publishing type:Research paper (scientific journal)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    <p>Deep Hedging has garnered attention as a novel approach utilizing deep learning to address challenges in pricing and hedging in incomplete financial markets.However, the effectiveness of Deep Hedging when applied to multiple options has not been thoroughly examined.Additionally, financial market data is often noisy, making it challenging to train deep learning models effectively. Therefore, in this study, we aim to address these issues by evaluating the effectiveness of Deep Hedging for multiple options using data from the Bitcoin options market.We verify its effectiveness for multiple options and assess the impact of introducing smoothing techniques. Specifically, we introduce a technique called Deep Smoothing to reduce noise and prevent arbitrage opportunities when dealing with a portfolio composed of multiple European options with the same underlying asset, the same maturity, but different strike prices.We combine this smoothing technique with the structure of the Implied Volatility Smile(IVS)to propose a new framework of Deep Hedging for multiple options. We validate our empirical results with Bitcoin options market data, demonstrating that: (1) Deep Hedging outperforms traditional delta hedging, (2) when hedging multiple options, our method achieves performance equal to or better than conventional Deep Hedging targeting a single option, and (3) the application of Deep Smoothing to the input data leads to improved hedging performance.</p>

    DOI: 10.1527/tjsai.39-4_fin23-h

  • Information Value of Japanese Financial Results Briefings Using Text Mining Reviewed

    Kuroki Yutaka, Manabe Tomonori, Nakagawa Kei

    Transactions of the Japanese Society for Artificial Intelligence   39 ( 4 )   FIN23-C_1 - 8   2024.07( ISSN:13460714 ( eISSN:13468030

     More details

    Authorship:Last author   Publishing type:Research paper (scientific journal)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    <p>Financial results briefings are a bidirectional communication channel between companies and stakeholders, complementing unidirectional communication through annual reports and integrated reports, among others. Financial results briefings provide a platform for companies to promptly explain their financial performance, business status, and strategies. They typically consist of a presentation by management and a QA session, enabling participants to directly inquire about financial performance and resolve concerns. We analyze the information value of financial results briefings from both the company and investor perspectives in the Japanese market. For companies, the value lies in determining whether information disclosed during these financial results briefings reduces the cost of capital. Higher-quality information disclosure is theorized to mitigate information asymmetry among market participants and, consequently, lower the cost of capital. Therefore, we assign sentiments to text data from financial results briefings, considering the corresponding financial results. We then examine the correlation between text sentiments, text lengths, and the cost of capital. For investors, the question is whether information disclosure during these financial results briefings influences post-disclosure abnormal returns. We examine the relationship between sentiment and postdisclosure abnormal returns. As a result, from a company’s perspective, we find that the cost of capital tends to be lower when the text length in the QA session is large. This suggests that sufficient information disclosure contributes to reducing the cost of capital, and is consistent with existing empirical studies and theoretical models. From the investors’ perspective, we find that the sentiment of the QA session and the excess sentiment beyond the expected from the explanation are associated with short-term abnormal returns. This result confirms that QA is a valuable source of information for investors. We underscore the significance of financial results briefings in both company IR activities and from the perspective of investors.</p>

    DOI: 10.1527/tjsai.39-4_fin23-c

  • Relationship between deep hedging and delta hedging: Leveraging a statistical arbitrage strategy Reviewed International coauthorship

    Horikawa H.

    Finance Research Letters   62   2024.04( ISSN:15446123

     More details

    Authorship:Last author, Corresponding author   Publishing type:Research paper (scientific journal)   Kind of work:Joint Work   International / domestic magazine:International journal  

    DOI: 10.1016/j.frl.2024.105101

  • Direct Reinforcement Learning for Convex Risk Measures

    MIKITO Hiruki, KEI Nakagawa

    JSAI Technical Report, Type 2 SIG   2023 ( FIN-032 )   57 - 64   2024.02( eISSN:24365556

     More details

    Authorship:Last author   Publishing type:Research paper (conference, symposium, etc.)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    <p>再帰的強化学習は価値関数を用いずに方策を更新する強化学習アルゴリズムであり、方策の更新をある目的関数の勾配に基づいて行う手法がトレーディング戦略に応用されている。しかしながら、それらは少数の具体的な目的関数に基づくものであり、柔軟な目的関数の選択が可能であるとは言えない。そこで本論文では、再帰的強化学習における目的関数を劣微分が1点集合となる凸リスク尺度と、2つの時間整合的な動的凸リスク尺度に設定し、それらの勾配の計算方法を提案する。これにより複数のリスク尺度から柔軟に目的関数を選択することが可能となり、さらにリスクの時間整合的な評価が可能となる。実証分析では、人工データおよび実際の市場データを用いて提案手法の有効性を検証する。</p>

    DOI: 10.11517/jsaisigtwo.2023.fin-032_57

  • Predicting Asset Price Fluctuations Before Monetary Policy Decisions Using Macroeconomic Data and the Beige Book

    MASAKI Fujiwara, KEI Nakagawa, YOSHIYUKI Suimon, YUYA Akita

    JSAI Technical Report, Type 2 SIG   2023 ( FIN-032 )   65 - 72   2024.02( eISSN:24365556

     More details

    Publishing type:Research paper (conference, symposium, etc.)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    <p>連邦公開市場委員会(FOMC)によって決定される金融政策は、多様な資産に影響を及ぼす。この研究では、FOMCの会合日の二週間前から当日にかけて、金融政策の影響が特に顕著に現れる時期を対象とし、各種資産の価格変動をモデル化する。分析には、市場、マクロ経済データと国内景況感を示すBeige Bookのテキストデータを用い、XGBoostモデルを活用して予測を行った。さらに、連邦準備制度が「物価の安定と雇用の最大化」を目的に政策を運営していることを踏まえ、これらの目標に関連するテキストデータを特徴量化し、モデルの性能向上を図った。</p>

    DOI: 10.11517/jsaisigtwo.2023.fin-032_65

  • Inference-based sentiment analysis of financial text considering business profile with large language model Invited

    TAKANO Kaito, NAKAGAWA Kei

    Proceedings of the Annual Conference of JSAI   JSAI2024 ( 0 )   4Xin211 - 4Xin211   2024( eISSN:27587347

     More details

    Authorship:Last author   Publishing type:Research paper (conference, symposium, etc.)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    <p>Sentiment analysis plays a critical role in financial text mining. However, conventional approaches typically focus on texts that directly describe positive or negative impacts on financial performance. Considering practical investment decisions, it's necessary to extract sentiment from texts that may not explicitly express sentiment, taking into account the background context. Particularly, such an inferring sentiment becomes even more important for small and mid-cap companies, which rarely receive news coverage. Therefore, in this study, we utilize the inference capabilities of a Large Language Model (LLM) to tackle an inference-based sentiment analysis task. Specifically, we input the business profile of a company as background context and infer the impact of a particular major event on the company performance, subsequently assigning sentiment. We conduct the experiments to assess the practical usefulness of the model's output.</p>

    DOI: 10.11517/pjsai.jsai2024.0_4xin211

  • How to Evaluate Biases in Financial Investment Decision-Making within Large Language Models ?

    TACHIBANA Ryuchi, NAKAGAWA Kei, ITO Tomoki, TAKANO Kaito

    Proceedings of the Annual Conference of JSAI   JSAI2024 ( 0 )   3Xin236 - 3Xin236   2024( eISSN:27587347

     More details

    Publishing type:Research paper (conference, symposium, etc.)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    <p>In recent years, the establishment of new authorized corporations and the introduction of the new NISA system have led to increased interest in financial education across various age groups. Concurrently, there is an expected rise in the use of large language models (LLMs) in services that support financial education, such as chatbots and robo-advisors. However, LLMs are often regarded as 'black boxes', raising concerns about biases in their outputs, including potential racial discrimination. Therefore, in this study we develop metrics to measure and evaluate the biases of LLMs within the context of financial education. Drawing from behavioral economics, we have developed methods to assess LLMs in terms of risk preference, time preference, and social preference. Furthermore, we evaluate various LLMs, including ChatGPT and PaLM, using these proposed metrics and present our findings.</p>

    DOI: 10.11517/pjsai.jsai2024.0_3xin236

  • Residual return extraction using Principal Component Equivalence method

    IMAJO Kentaro, NAKAGAWA Kei, MATOYA Kazuki, HIRANO Masanori, AOKI Masana, IMAHASE Taku

    Proceedings of the Annual Conference of JSAI   JSAI2024 ( 0 )   3D5GS205 - 3D5GS205   2024( eISSN:27587347

     More details

    Publishing type:Research paper (conference, symposium, etc.)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    <p>In this paper, we focus on the residual returns that are not explained by the common factors in financial asset returns. We propose a novel method to extract well-behaved residual returns based on principal component analysis (PCA). Traditional PCA requires determining the number of common factors, presenting a trade-off: increasing the number reduces common factors but also increases the potential for noise. Our proposed method randomly divides returns into two groups, extracts factors (PC) from one, and estimates eigenvalues from the other. Then, by creating a projection matrix that aims to transform eigenvalues to the same level, the proposed method can extract residual returns with better and more stable properties than PCA. Finally, we demonstrate that our method is capable of extracting residual returns with desirable properties through analysis based on both synthetic and real market data.</p>

    DOI: 10.11517/pjsai.jsai2024.0_3d5gs205

  • Impact of the number of AI traders on the market

    NAKAGAWA Kei, HIRANO Masanori, MINAMI Kentaro, MIZUTA Takanobu

    Proceedings of the Annual Conference of JSAI   JSAI2024 ( 0 )   3Xin201 - 3Xin201   2024( eISSN:27587347

     More details

    Authorship:Lead author, Corresponding author   Publishing type:Research paper (conference, symposium, etc.)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    <p>Recent developments of machine learning techniques have made AI traders more prominent in financial markets, drawing attention to their market impact. We focus on the GARCH(1,1) model, a key financial time series model, to analyze the influence of AI traders. The GARCH model is the most common method for modeling conditional variance capable of replicating volatility clustering, but its micro-foundations have not yet been fully understood. We categorize market investors into noise traders, fundamental traders, and AI traders and construct the GARCH model with artificial markets using them. We explore how each group affects the GARCH model's parameters and examine the role of AI traders in market dynamics and volatility, using theoretical models and simulations.</p>

    DOI: 10.11517/pjsai.jsai2024.0_3xin201

  • Qualitative expressions in MD&A and management forecast accuracy

    YAKABI Kiyoshi, KUROKI Yutaka, NAKAGAWA Kei

    Proceedings of the Annual Conference of JSAI   JSAI2024 ( 0 )   2G6GS601 - 2G6GS601   2024( eISSN:27587347

     More details

    Authorship:Last author   Publishing type:Research paper (conference, symposium, etc.)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    <p>In this study, we explore the Management Discussion and Analysis (MD&A) section of Japanese Annual Securities Reports, a mandatory disclosure known for providing crucial qualitative information about management perspectives. Our research primarily utilizes the ChatGPT to extract qualitative expressions within the MD&A texts. Firstly, we compare the proportion of qualitative expressions presented in their MD&A across different companies, quantifying the extent of qualitative information. Our hypothesis that a higher prevalence of qualitative information may indicate a deeper understanding by management of their company’s business model, market environment, and strategy, potentially leading to more accurate performance forecasts. We then analyze the impact of the proportion of qualitative expressions in the MD&A on the accuracy of management earnings guidance in financial results summary. We aim to understand how the nature of information in MD&A–whether more qualitative–correlates with the precision of managerial predictions on company performance.</p>

    DOI: 10.11517/pjsai.jsai2024.0_2g6gs601

  • Large Language Models are Intelligent Traders

    KATSUYA Ito, NAKAGAWA Kei

    Proceedings of the Annual Conference of JSAI   JSAI2024 ( 0 )   3Xin283 - 3Xin283   2024( eISSN:27587347

     More details

    Authorship:Last author   Publishing type:Research paper (conference, symposium, etc.)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    <p>This paper introduces LLM-Traders, a novel approach to analyzing financial time series (FTS) through the use of fine-tuned large language models (LLMs) and prompt engineering. The research addresses three primary challenges inherent in FTS analysis: (1) pervasive noise, (2) complex, diverse range of models, and (3) constantly evolving dynamics. Our methodology initially concentrates on reducing overfitting, a prevalent issue caused by noisy data. This is achieved by meticulously fine-tuning the LLMs to recognize and interpret the unique attributes of FTS. Subsequently, we implement strategic prompt engineering within these models. This strategy enables effective navigation and adaptation to the multifaceted nature of FTS and accommodates the wide array of existing models. To adapt to the dynamic nature of FTS, we propose an innovative dynamic ensemble method. This approach combines multiple prompt responses in a synergistic manner, enhancing the versatility and accuracy of the analysis. Overall, our integrated approach provides a comprehensive, robust, and flexible framework for addressing the complexities of modern FTS analysis.</p>

    DOI: 10.11517/pjsai.jsai2024.0_3xin283

  • Lf-Net:Generating Fractional Time-Series with Latent Fractional-Net Reviewed

    Nakagawa K.

    Proceedings of the International Joint Conference on Neural Networks   2024( ISBN:9798350359312

     More details

    Authorship:Lead author, Corresponding author   Publishing type:Research paper (international conference proceedings)   Kind of work:Joint Work   International / domestic magazine:International journal  

    DOI: 10.1109/IJCNN60899.2024.10650271

  • Analysis of investment behavior of individual investors in the FX market: Influence of Beige Book information

    ICHIKAWA Yoshihiko, ASANO Moeko, TAKANO Kaito, NAKAGAWA Kei

    Proceedings of the Annual Conference of JSAI   JSAI2024 ( 0 )   3Xin224 - 3Xin224   2024( eISSN:27587347

     More details

    Authorship:Last author   Publishing type:Research paper (conference, symposium, etc.)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    <p>In recent years, the increase in customer trading volumes at Japanese FX brokers has highlighted the significance of analyzing their customer trends. Traditional finance research has focused on the stock market, analyzing volume changes after earnings or news announcements and the differences between individual and institutional investors. However, the response of individual investors in the FX market, particularly to economic announcements, remains underexplored. This study aims to examine individual investors' trading behaviors in response to the FOMC and Beige Book releases, assessing whether they trade based on the information (H1) and the tone of the Beige book information (H2). Our findings confirm that the publication of the FOMC and Beige Book reports influences trading volume among individual investors. Additionally, we observe that individual investors react to specific topics mentioned in the Beige Book, which is released prior to the FOMC meeting.</p>

    DOI: 10.11517/pjsai.jsai2024.0_3xin224

  • Evaluating Company-specific Biases in Financial Sentiment Analysis using Large Language Models

    Nakagawa K.

    Proceedings - 2024 IEEE International Conference on Big Data, BigData 2024   6614 - 6623   2024( ISBN:9798350362480

     More details

    Authorship:Lead author, Corresponding author   Publishing type:Research paper (international conference proceedings)   Kind of work:Joint Work   International / domestic magazine:International journal  

    DOI: 10.1109/BigData62323.2024.10826008

  • Dynamic Dual Sparse Topic Model: Integrating Temporal Dynamics and Sparsity with Spike and Slab Priors into Topic Model Reviewed

    Masuda T.

    Proceedings - 2024 16th IIAI International Congress on Advanced Applied Informatics, IIAI-AAI 2024   299 - 304   2024( ISBN:9798350377903

     More details

    Publishing type:Research paper (international conference proceedings)   Kind of work:Joint Work   International / domestic magazine:International journal  

    DOI: 10.1109/IIAI-AAI63651.2024.00063

  • Does Executive Compensation with ESG Target Improve Firm's ESG Performance? - Evidence from Japan Reviewed

    Yamawaki D.

    Proceedings - 2024 16th IIAI International Congress on Advanced Applied Informatics, IIAI-AAI 2024   267 - 272   2024( ISBN:9798350377903

     More details

    Authorship:Last author   Publishing type:Research paper (international conference proceedings)   Kind of work:Joint Work   International / domestic magazine:International journal  

    DOI: 10.1109/IIAI-AAI63651.2024.00058

  • Optimal Execution Strategy Using Deep Q-Network with Heuristics Policy Reviewed

    Ogawa T.

    Proceedings - 2024 16th IIAI International Congress on Advanced Applied Informatics, IIAI-AAI 2024   456 - 461   2024( ISBN:9798350377903

     More details

    Publishing type:Research paper (international conference proceedings)   Kind of work:Joint Work   International / domestic magazine:International journal  

    DOI: 10.1109/IIAI-AAI63651.2024.00089

  • Relationship Between Qualitative Expressions in MD&amp;A and Managements' Forecast Accuracy Reviewed

    Kuroki Y.

    Proceedings - 2024 16th IIAI International Congress on Advanced Applied Informatics, IIAI-AAI 2024   280 - 285   2024( ISBN:9798350377903

     More details

    Publishing type:Research paper (international conference proceedings)   Kind of work:Joint Work   International / domestic magazine:International journal  

    DOI: 10.1109/IIAI-AAI63651.2024.00060

  • SBLM: Sparse Black Litterman Model using the Spike and Slab Prior

    MASUDA Tatsuki, NAKAGAWA Kei, HOSHINO Takahiro

    Proceedings of the Annual Conference of JSAI   JSAI2024 ( 0 )   4Xin255 - 4Xin255   2024( eISSN:27587347

     More details

    Publishing type:Research paper (conference, symposium, etc.)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    <p>The Black-Litterman (BL) method is a useful tool for portfolio construction, treating expected returns and investors' outlook as random variables, and estimating asset weights through Bayesian updating. However, the BL method involves numerous parameters that can influence asset weights, potentially leading to excessive rebalancing, increased transaction costs, and deteriorated performance. Therefore, in this study, we propose the Sparse Black-Litterman (SBL) method to reduce transaction costs. Specifically, by incorporating the Spike and Slab prior distribution into weight changes, we introduce sparsity to weight fluctuations, thereby suppressing unnecessary rebalancing. This approach allows for the construction of an efficient portfolio that integrates investor views while reducing transaction costs. Theoretically, we prove that the introduction of a prior distribution can be reduce rebalancing. In the empirical analysis, we use both synthetic and real data to validate the effectiveness of our proposed method and its impact on reducing transaction costs.</p>

    DOI: 10.11517/pjsai.jsai2024.0_4xin255

  • Stock to Music: Transformation of Multivariate Stock Time Series into Music Data

    HIRAMATSU Yuki, NAKAGAWA Kei, TAKANO Kaito, NAKAMURA Eita

    Proceedings of the Annual Conference of JSAI   JSAI2024 ( 0 )   3Xin237 - 3Xin237   2024( eISSN:27587347

     More details

    Publishing type:Research paper (conference, symposium, etc.)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    <p>We propose a method for transforming multivariate stock time series data into music. Typically, investors rely on visual information, such as stock charts, to make investment decisions based on stock time series. However, watching numerous stock data simultaneously and for long time is highly demanding and challenging. Therefore, we focus on representing essential information for investment decisions (trends and sudden changes) through sound information, or more precisely, music, which does not depend on visual interpretation. We expect that decision-making through musical transformation can reduce cognitive load and be accessible to a broader range of users. We conduct experiments to determine whether the essential information can be successfully acquired from the music generated by the proposed method.</p>

    DOI: 10.11517/pjsai.jsai2024.0_3xin237

  • Optimal execution strategy using Deep Q-Network with heuristics policy

    OGAWA Tatsuyoshi, NAKAGAWA Kei, IKEDA Kokolo

    Proceedings of the Annual Conference of JSAI   JSAI2024 ( 0 )   3Xin280 - 3Xin280   2024( eISSN:27587347

     More details

    Publishing type:Research paper (conference, symposium, etc.)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    <p>The optimal execution problem involves finding the optimal execution strategy that minimizes the cost of trading a specific volume of stocks within a certain period. To address this, deep reinforcement learning methods including the Deep Q Network~(DQN) which approximates the action-value function Q through deep learning have been proposed for finding optimal execution strategies. However, deep reinforcement learning faces challenges, such as instability in learning and the need for a huge amount of data. Therefore, we propose incorporating strategies derived from insights of the financial field into conventional DQN methods during the learning process. This approach is expected to be able to learn high-performing policies more stably. Numerical experiments are conducted in environments with various noise tendencies to verify the effectiveness of the proposed method. The results show that the proposed method can consistently reduce costs across all environments compared to baseline methods.</p>

    DOI: 10.11517/pjsai.jsai2024.0_3xin280

  • Cross-sectional reversal portfolios in the cryptocurrency market: Behavioral approaches

    Kei Nakagawa, Ryuta Sakemoto

    2024

     More details

  • Prices of Risk Estimation for Commodity Factors

    Kei Nakagawa, Ryuta Sakemoto

    2024

     More details

  • Do commodity factors work as inflation hedges and safe havens? Reviewed

    Nakagawa K.

    Finance Research Letters   58   2023.12( ISSN:15446123

     More details

    Authorship:Lead author   Publishing type:Research paper (scientific journal)   Kind of work:Joint Work   International / domestic magazine:International journal  

    DOI: 10.1016/j.frl.2023.104585

  • Deep hedging for multiple options in the BTC Options Market Utilizing Deep Smoothing Reviewed

    FUJIWARA Masaki, NAKAKOMI Tomoki, KAKO Kaisei, HORIKAWA Hiroaki, NAKAGAWA Kei

    JSAI Technical Report, Type 2 SIG   2023 ( FIN-031 )   110 - 117   2023.10( eISSN:24365556

     More details

    Authorship:Last author   Publishing type:Research paper (scientific journal)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    DOI: 10.11517/jsaisigtwo.2023.fin-031_110

  • Can ChatGPT pass the JCPA exam?: Challenge for the short-answer method test on Auditing

    MASUDA Tatsuki, NAKAGAWA Kei, HOSHINO Takahiro

    JSAI Technical Report, Type 2 SIG   2023 ( FIN-031 )   81 - 88   2023.10( eISSN:24365556

     More details

    Publishing type:Research paper (conference, symposium, etc.)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    DOI: 10.11517/jsaisigtwo.2023.fin-031_81

  • Automatic generation of market comments in management reports of investment funds using ChatGPT

    TAKANO Kaito, NAKAGAWA Kei, FUJIMOTO Yugo

    JSAI Technical Report, Type 2 SIG   2023 ( FIN-031 )   61 - 67   2023.10( eISSN:24365556

     More details

    Publishing type:Research paper (conference, symposium, etc.)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    DOI: 10.11517/jsaisigtwo.2023.fin-031_61

  • Multifactor Model with Deep Learning for Currency Investments Reviewed

    Shingo Sashida, Kei Nakagawa

    2023 14th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)   412 - 417   2023.07

     More details

    Authorship:Last author   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1109/iiai-aai59060.2023.00086

  • Treasury yield spread prediction with sentiments of Beige Book and macroeconomic data Reviewed

    Masaki Fujiwara, Yoshiyuki Suimon, Kei Nakagawa

    2023 14th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)   337 - 342   2023.07

     More details

    Authorship:Last author, Corresponding author   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1109/iiai-aai59060.2023.00073

  • Text Mining of Future Dividend Policy Sentences from Annual Securities Reports Reviewed

    Kaito Takano, Tomoki Okada, Yusuke Shimizu, Kei Nakagawa

    2023 14th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)   281 - 286   2023.07

     More details

    Authorship:Last author, Corresponding author   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1109/iiai-aai59060.2023.00063

  • Predicting Financial Asset Returns with Factor and Lead-Lag Relationships: Ridge Regression with Lagged Penalty Reviewed

    Tatsuki Masuda, Kei Nakagawa

    2023 14th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)   534 - 539   2023.07

     More details

    Authorship:Last author, Corresponding author   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1109/iiai-aai59060.2023.00107

  • Optimal liquidation strategy for cryptocurrency marketplaces using stochastic control Reviewed

    Kenji Kubo, Kei Nakagawa, Daiki Mizukami, Dipesh Acharya

    Finance Research Letters   53   103639 - 103639   2023.05( ISSN:1544-6123

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.frl.2023.103639

  • No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging Reviewed

    Shota Imaki, Kentaro Imajo, Katsuya Ito, Kentaro Minami, Kei Nakagawa

    The Journal of Financial Data Science   5 ( 2 )   84 - 99   2023.04( ISSN:2640-3943

     More details

    Authorship:Last author, Corresponding author   Publishing type:Research paper (scientific journal)  

    Deep hedging (Buehler et al. 2019) is a versatile framework to compute the
    optimal hedging strategy of derivatives in incomplete markets. However, this
    optimal strategy is hard to train due to action dependence, that is, the
    appropriate hedging action at the next step depends on the current action. To
    overcome this issue, we leverage the idea of a no-transaction band strategy,
    which is an existing technique that gives optimal hedging strategies for
    European options and the exponential utility. We theoretically prove that this
    strategy is also optimal for a wider class of utilities and derivatives
    including exotics. Based on this result, we propose a no-transaction band
    network, a neural network architecture that facilitates fast training and
    precise evaluation of the optimal hedging strategy. We experimentally
    demonstrate that for European and lookback options, our architecture quickly
    attains a better hedging strategy in comparison to a standard feed-forward
    network.

    DOI: 10.3905/jfds.2023.1.125

  • MACRO FACTORS IN THE RETURNS ON CRYPTOCURRENCIES Reviewed

    Kei Nakagawa, Ryuta Sakemoto

    Applied Finance Letters   11   146 - 158   2023.02( ISSN:2253-5799 ( eISSN:2253-5802

     More details

    Authorship:Lead author, Corresponding author   Publishing type:Research paper (scientific journal)  

    This study investigates the relationship between expected returns on cryptocurrencies and macroeconomic fundamentals. Investors employ a lot of macroeconomic indicators for their investment decision, and hence adopting a few macroeconomic indicators is not sufficient in capturing a change in economic states. Moreover, due to aggregation, macroeconomic indicators are not measured precisely. To overcome these problems, we employ a dynamic factor model and extract common factors from a large number of macroeconomic indicators. We find that the common factors are strongly linked to the cryptocurrency expected returns at a quarterly frequency, while we do not observe this relationship using macroeconomic indicators such as inflation and money supply. This suggests that macroeconomic information matters in a longer term, which contrasts with the previous literature that explores a short-term relationship. The cryptocurrency prices are not determined by macroeconomic fundamentals in a short-term period since speculators impact the prices. However, in a long-term period, the prices are more linked to macroeconomic fundamentals.

    DOI: 10.24135/afl.v11i.540

  • ABCD-Forecast:Augmentation and Bagging method for Confidential Data series Forecasting

    ITO Katsuya, NAKAGAWA Kei, IMAJO Kentaro, SAKEMOTO Ryuta

    Proceedings of the Annual Conference of JSAI   JSAI2023 ( 0 )   3Xin409 - 3Xin409   2023( eISSN:27587347

     More details

    Publishing type:Research paper (conference, symposium, etc.)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    <p>Financial time series prediction with machine learning is an important research topic both practically and academically. Financial time series are noisy, non-stationary, and may contain confidential information, which makes them more troublesome for researchers. To deal with these challenges, we propose a novel competition-based prediction method called Augmentation and Bagging method for Confidential Data series Forecasting (ABCD-Forecast). Our approach is inspired by the framework of data science competitions where multiple analysts submit their predictions and receive the feedback. ABCD-Forecast first distributes various de-noised versions of the data to virtual analysts, enabling the generation of diverse datasets without noise. Combining the predictions of these virtual analysts through a competition format allows us to obtain diverse and accurate models. Our method is applicable for different situations to handle non-stationary data. Furthermore, preprocessing and distributing the dataset through our method ensures data confidentiality, which is substantial in many actual situations. Empirical analysis using real-world data demonstrates the effectiveness of the proposed method in achieving good prediction accuracy.</p>

    DOI: 10.11517/pjsai.jsai2023.0_3xin409

  • Fact or Opinion? - Essential Value for Financial Results Briefing Reviewed

    Kuroki Y.

    Proceedings - 2023 14th IIAI International Congress on Advanced Applied Informatics, IIAI-AAI 2023   375 - 380   2023( ISBN:9798350324228

     More details

    Authorship:Last author   Publishing type:Research paper (international conference proceedings)   Kind of work:Joint Work   International / domestic magazine:International journal  

    DOI: 10.1109/IIAI-AAI59060.2023.00080

  • Uncertainty Aware Trader-Company Method: Interpretable Stock Price Prediction Capturing Uncertainty Reviewed

    Yugo Fujimoto, Kei Nakagawa, Kentaro Imajo, Kentaro Minami

    2022 IEEE International Conference on Big Data (Big Data)   1238 - 1245   2022.12

     More details

    Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1109/bigdata55660.2022.10021096

  • Fractional SDE-Net: Generation of Time Series Data with Long-term Memory Reviewed

    Kohei Hayashi, Kei Nakagawa

    2022 IEEE 9th International Conference on Data Science and Advanced Analytics (DSAA)   1 - 10   2022.10

     More details

    Authorship:Last author, Corresponding author   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1109/dsaa54385.2022.10032351

  • Inflation rate tracking portfolio optimization method: Evidence from Japan Reviewed

    Kei Nakagawa, Yoshiyuki Suimon

    Finance Research Letters   49   103130 - 103130   2022.10( ISSN:1544-6123

     More details

    Authorship:Lead author, Corresponding author   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.frl.2022.103130

  • Dynamic allocations for currency investment strategies Reviewed

    Nakagawa Kei, Sakemoto Ryuta

    29 ( 10 )   1207 - 1228   2022.08( ISSN:1351847X ( eISSN:14664364

     More details

    Authorship:Lead author   Publishing type:Research paper (scientific journal)   Kind of work:Joint Work   International / domestic magazine:International journal  

    DOI: 10.1080/1351847x.2022.2100715

  • Market uncertainty and correlation between Bitcoin and Ether Reviewed

    Kei Nakagawa, Ryuta Sakemoto

    Finance Research Letters   103216 - 103216   2022.08( ISSN:1544-6123

     More details

    Authorship:Lead author, Corresponding author   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.frl.2022.103216

  • Multiple Portfolio Blending Strategy with Thompson Sampling Reviewed

    Keigo Fujishima, Kei Nakagawa

    2022 12th International Congress on Advanced Applied Informatics (IIAI-AAI)   449 - 454   2022.07

     More details

    Authorship:Last author, Corresponding author   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1109/iiaiaai55812.2022.00094

  • Investment Strategy via Lead Lag Effect using Economic Causal Chain and SSESTM Model Reviewed

    Kei Nakagawa, Shingo Sashida, Hiroki Sakaji

    2022 12th International Congress on Advanced Applied Informatics (IIAI-AAI)   287 - 292   2022.07

     More details

    Authorship:Lead author, Corresponding author   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1109/iiaiaai55812.2022.00065

  • Industry Momentum Strategy Based on Text Mining in the Japanese Stock Market Reviewed

    Yuya Kimura, Kei Nakagawa

    2022 12th International Congress on Advanced Applied Informatics (IIAI-AAI)   420 - 423   2022.07

     More details

    Authorship:Last author, Corresponding author   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1109/iiaiaai55812.2022.00089

  • Cryptocurrency network factors and gold Reviewed

    Nakagawa K.

    Finance Research Letters   46   2022.05( ISSN:15446123

     More details

    Authorship:Lead author, Corresponding author   Publishing type:Research paper (scientific journal)   Kind of work:Joint Work   International / domestic magazine:International journal  

    DOI: 10.1016/j.frl.2021.102375

  • Time-series gradient boosting tree for stock price prediction. Reviewed

    Kei Nakagawa, Kenichi Yoshida

    International Journal of Data Mining, Modelling and Management   14 ( 2 )   110 - 125   2022

     More details

    Authorship:Lead author, Corresponding author   Publishing type:Research paper (scientific journal)  

    DOI: 10.1504/IJDMMM.2022.123357

  • Corporate Evaluation from Stakeholders by ECS-BERT model and Financial Performance

    SASHIDA Shingo, NAKAGAWA Kei, KUROKI Yutaka, MANABE Tomonori

    Proceedings of the Annual Conference of JSAI   JSAI2022 ( 0 )   4Yin256 - 4Yin256   2022

     More details

    Publishing type:Research paper (conference, symposium, etc.)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    <p>With growing interest in stakeholder capitalism, ESG, and the SDGs, quantifying a company's social reputation is becoming more important. It is useful not only for investors but also for various stakeholders to evaluate the content of the integrated report, which describes a message from companies to stakeholders. In this study, we propose IR score that quantifies the goodness of the integrated report by a BERT model. The BERT model is fine-tuned using ECS which is a score that quantifies the evaluation from stakeholders. We analyze the relationship between the IR score and the financial characteristics of the company. As a result of empirical analysis, we found that the IR score is related to the profitability of the company.</p>

    DOI: 10.11517/pjsai.jsai2022.0_4yin256

  • Enhanced Quantile Portfolio for Multifactor Model with Deep Learning Reviewed

    Abe M.

    Proceedings - 2022 12th International Congress on Advanced Applied Informatics, IIAI-AAI 2022   293 - 296   2022( ISBN:9781665497558

     More details

    Authorship:Last author   Publishing type:Research paper (international conference proceedings)   Kind of work:Joint Work   International / domestic magazine:International journal  

    DOI: 10.1109/IIAIAAI55812.2022.00066

  • Enhanced Quintile Portfolio for Multifactor Model with Deep Learning

    ABE Masaya, NAKAGAWA Kei

    Proceedings of the Annual Conference of JSAI   JSAI2022 ( 0 )   3Yin243 - 3Yin243   2022

     More details

    Authorship:Last author   Publishing type:Research paper (conference, symposium, etc.)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    <p>Stock return predictability is an important research theme as it reflects our economic and social organization, and significant efforts are made to explain the dynamism therein. Although machine learning methods are increasingly popular and effective in stock return prediction in the cross-section, still most of the previous studies rely on a simple quintile portfolio. In this paper, we apply deep learning for stock return prediction in the cross-section and propose a more sophisticated portfolio construction framework called Enhanced Quintile Portfolios. These portfolios are inspired by Pure Quintile Portfolio that overcome the main drawbacks of simple quintile portfolios based on a single sort. The formulation of Enhanced Quintile Portfolio is a quadratic programming problem that considers the trade-off between portfolio alpha and stock diversification, while maintaining the characteristics of a simple quintile portfolio. The experimental comparison shows that the proposed approach outperforms a simple quintile portfolio.</p>

    DOI: 10.11517/pjsai.jsai2022.0_3yin243

  • The value of reputation capital during the COVID-19 crisis: Evidence from Japan Reviewed

    Tomonori Manabe, Kei Nakagawa

    Finance Research Letters   46   102370 - 102370   2021.08( ISSN:1544-6123

     More details

    Authorship:Last author   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.frl.2021.102370

  • Taming Tail Risk: Regularized Multiple β Worst-Case CVaR Portfolio. Reviewed

    Kei Nakagawa, Katsuya Ito

    Symmetry   13 ( 6 )   922 - 922   2021.05

     More details

    Authorship:Lead author, Corresponding author   Publishing type:Research paper (scientific journal)  

    DOI: 10.3390/sym13060922

  • Entropy based student’s t-process dynamical model Reviewed

    Nono A.

    Entropy   23 ( 5 )   2021.05

     More details

    Authorship:Last author   Publishing type:Research paper (scientific journal)   Kind of work:Joint Work   International / domestic magazine:International journal  

    DOI: 10.3390/e23050560

  • Extraction of important pages of shareholder convocation notices using deep learning by automatic generation of training data Reviewed

    Takano, K., Sakai, H., Nakagawa, K.

    Transactions of the Japanese Society for Artificial Intelligence   36 ( 1 )   WI2 - G_1   2021.01( ISSN:1346-8030 ( eISSN:1346-8030

     More details

    Authorship:Last author   Publishing type:Research paper (scientific journal)  

    DOI: 10.1527/tjsai.36-1_WI2-G

  • Deep Portfolio Optimization via Distributional Prediction of Residual Factors Reviewed

    Imajo K.

    35th AAAI Conference on Artificial Intelligence, AAAI 2021   1   213 - 222   2021( ISBN:9781713835974

     More details

    Authorship:Last author   Publishing type:Research paper (international conference proceedings)   Kind of work:Joint Work   International / domestic magazine:International journal  

    DOI: 10.1609/aaai.v35i1.16095

  • Trader-Company Method: A Metaheuristics for Interpretable Stock Price Prediction. Reviewed

    Katsuya Ito, Kentaro Minami, Kentaro Imajo, Kei Nakagawa

    AAMAS '21: 20th International Conference on Autonomous Agents and Multiagent Systems(AAMAS)   656 - 664   2021( ISBN:9781450383073

     More details

    Authorship:Last author  

    Investors try to predict returns of financial assets to make successful
    investment. Many quantitative analysts have used machine learning-based methods
    to find unknown profitable market rules from large amounts of market data.
    However, there are several challenges in financial markets hindering practical
    applications of machine learning-based models. First, in financial markets,
    there is no single model that can consistently make accurate prediction because
    traders in markets quickly adapt to newly available information. Instead, there
    are a number of ephemeral and partially correct models called "alpha factors".
    Second, since financial markets are highly uncertain, ensuring interpretability
    of prediction models is quite important to make reliable trading strategies. To
    overcome these challenges, we propose the Trader-Company method, a novel
    evolutionary model that mimics the roles of a financial institute and traders
    belonging to it. Our method predicts future stock returns by aggregating
    suggestions from multiple weak learners called Traders. A Trader holds a
    collection of simple mathematical formulae, each of which represents a
    candidate of an alpha factor and would be interpretable for real-world
    investors. The aggregation algorithm, called a Company, maintains multiple
    Traders. By randomly generating new Traders and retraining them, Companies can
    efficiently find financially meaningful formulae whilst avoiding overfitting to
    a transient state of the market. We show the effectiveness of our method by
    conducting experiments on real market data.

    Other URL: https://dblp.uni-trier.de/conf/atal/2021

  • Carry Trading Strategy with RM-CVaR Portfolio Reviewed

    Nakagawa K.

    Proceedings - 2021 10th International Congress on Advanced Applied Informatics, IIAI-AAI 2021   490 - 493   2021( ISBN:9781665424202

     More details

    Authorship:Lead author, Corresponding author   Publishing type:Research paper (international conference proceedings)   Kind of work:Joint Work   International / domestic magazine:International journal  

    DOI: 10.1109/IIAI-AAI53430.2021.00085

  • GO-GJRSK Model with Application to Higher Order Risk-Based Portfolio Reviewed

    Kei Nakagawa, Yusuke Uchiyama

    Mathematics   8 ( 11 )   1990 - 1990   2020.11( eISSN:2227-7390

     More details

    Authorship:Lead author, Corresponding author   Publishing type:Research paper (scientific journal)  

    There are three distinguishing features in the financial time series, such as stock prices, are as follows: (1) Non-normality, (2) serial correlation, and (3) leverage effect. All three points need to be taken into account to model the financial time series. However, multivariate financial time series modeling involves a large number of stocks, with many parameters to be estimated. Therefore, there are few examples of multivariate financial time series modeling that explicitly deal with higher-order moments. Furthermore, there is no multivariate financial time series model that takes all three characteristics above into account. In this study, we propose the generalized orthogonal (GO)-Glosten, Jagannathan, and Runkle GARCH (GJR) model which extends the GO-generalized autoregressive conditional heteroscedasticity (GARCH) model and incorporates the three features of the financial time series. We confirm the effectiveness of the proposed model by comparing the performance of risk-based portfolios with higher-order moments. The results show that the performance with our proposed model is superior to that with baseline methods, and indicate that estimation methods are important in risk-based portfolios with higher moments.

    DOI: 10.3390/math8111990

  • Improving Momentum Strategies using Adaptive Elastic Dynamic Mode Decomposition

    UCHIYAMA Yusuke, NAKAGAWA Kei

    JSAI Technical Report, Type 2 SIG   2020 ( FIN-025 )   76   2020.10( eISSN:24365556

     More details

    Authorship:Last author   Publishing type:Research paper (conference, symposium, etc.)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    DOI: 10.11517/jsaisigtwo.2020.fin-025_76

  • Asset Allocation Strategy with Non-Hierarchical Clustering Risk Parity Portfolio Reviewed

    Kei Nakagawa, Kakanobu Kawahara, Akio Ito

    Journal of Mathematical Finance   10 ( 4 )   513 - 524   2020.10

     More details

    Authorship:Lead author, Corresponding author   Publishing type:Research paper (scientific journal)  

  • Empirical Research on Value Relevance between B2B Brand Valuation and Market Value Reviewed

    MANABE Tomonori, NAKAGAWA Kei

    Journal of the Japan Society for Management Information   29 ( 2 )   87 - 104   2020.09( ISSN:09187324 ( eISSN:24352209

     More details

    Authorship:Last author   Publishing type:Research paper (scientific journal)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    <p>In this paper, we analyzes the relationship between brand value and market value in Japanese companies. As a proxy for brand value, we use the corporate brand index BBES measured by the survey method using business card network information. One of the characteristics of BBES is that only the persons who hold business cards: the persons who have business relations with the surveyed company, are included in the survey. This feature of BBES allows measurement of brand power and reputation of B2B companies with low general awareness. The purpose of this paper is to statistically verify whether this BBES data shows a positive association with market value as a proxy for brand value. Empirical analysis for Japanese companies revealed that brand value by BBES additionally explains the market value given the information on net assets and profits. The explanatory power showed a high value especially in B2B companies.</p>

    DOI: 10.11497/jjasmin.29.2_87

    CiNii Article

  • B2B市場における企業ブランドとROAの関連性 Reviewed

    真鍋 友則, 中川 慧

    証券アナリストジャーナル = Securities analysts journal   58 ( 6 )   73 - 83   2020.06( ISSN:02877929

     More details

    Authorship:Last author   Publishing type:Research paper (scientific journal)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    CiNii Article

  • Cross-sectional Stock Price Prediction using Deep Learning for Actual Investment Management Reviewed

    Abe M.

    ACM International Conference Proceeding Series   9 - 15   2020.05( ISBN:9781450377102

     More details

    Authorship:Last author   Publishing type:Research paper (international conference proceedings)   Kind of work:Joint Work   International / domestic magazine:International journal  

    DOI: 10.1145/3399871.3399889

  • Statistical Arbitrage Strategy in Multi-Asset Market Using Time Series Analysis Reviewed

    Kei Nakagawa

    Journal of Mathematical Finance   10 ( 02 )   334 - 344   2020.05( ISSN:2162-2434 ( eISSN:2162-2442

     More details

    Authorship:Last author, Corresponding author   Publishing type:Research paper (scientific journal)  

    DOI: 10.4236/jmf.2020.102020

    Other URL: https://www.scirp.org/xml/100361.xml

  • Relationship between corporate brand and ROE in industrial markets

    MANABE Tomonori, NAKAGAWA Kei

    JSAI Technical Report, Type 2 SIG   2020 ( FIN-024 )   198   2020.03( eISSN:24365556

     More details

    Authorship:Last author   Publishing type:Research paper (conference, symposium, etc.)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    <p>The importance and necessity of investment in intangible asset value of companies, including ESG investment, has been increasing in recent years. Corporate brands are an important element of intangible assets. However, especially in B2B companies, there are many unclear points regarding the relationship between corporate brand value and business performance. In this study, we quantitatively evaluated the relationship between B2B corporate brands and performance using a new large-scale corporate brand survey index created from a business card exchange network. We examined the relationship between the corporate brand index and ROE for B2B companies. As a result, we found that companies with a high corporate brand index had a significantly higher profit margin, a significantly lower turnover rate and no significant association with financial leverage. These results show that even in B2B companies, companies with high corporate brands have implemented a differentiation strategy that allows a high margin range, while companies with low brands have adopted cost leadership strategies with high turnover rate.</p>

    DOI: 10.11517/jsaisigtwo.2020.fin-024_198

  • TPLVM: Portfolio Construction by Student's $t$-process Latent Variable Model Reviewed OA

    Yusuke Uchiyama, Kei Nakagawa

    Mathematics   8 ( 3 )   449 - 449   2020.01( eISSN:2227-7390

     More details

    Authorship:Last author, Corresponding author   International / domestic magazine:International journal  

    Optimal asset allocation is a key topic in modern finance theory. To realize
    the optimal asset allocation on investor's risk aversion, various portfolio
    construction methods have been proposed. Recently, the applications of machine
    learning are rapidly growing in the area of finance. In this article, we
    propose the Student's $t$-process latent variable model (TPLVM) to describe
    non-Gaussian fluctuations of financial timeseries by lower dimensional latent
    variables. Subsequently, we apply the TPLVM to minimum-variance portfolio as an
    alternative of existing nonlinear factor models. To test the performance of the
    proposed portfolio, we construct minimum-variance portfolios of global stock
    market indices based on the TPLVM or Gaussian process latent variable model. By
    comparing these portfolios, we confirm the proposed portfolio outperforms that
    of the existing Gaussian process latent variable model.

    DOI: 10.3390/math8030449

    Other URL: http://arxiv.org/pdf/2002.06243v1

  • Impact of Cryptocurrency Market Capitalization on Open Source Software Participation Reviewed

    Naoki Kobayakawa, Mitsuyoshi Imamura, Kei Nakagawa, Kenichi Yoshida

    Journal of Information Processing   28 ( 0 )   650 - 657   2020( ISSN:1882-6652

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.2197/ipsjjip.28.650

  • What Do Good Integrated Reports Tell Us?: An Empirical Study of Japanese Companies Using Text-Mining. Reviewed

    Kei Nakagawa, Shingo Sashida, Ryozo Kitajima, Hiroyuki Sakai 0003

    9th International Congress on Advanced Applied Informatics(IIAI-AAI)   516 - 521   2020( ISBN:9781728173979

     More details

    Authorship:Lead author, Corresponding author   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1109/IIAI-AAI50415.2020.00108

    Other URL: https://dblp.uni-trier.de/db/conf/iiaiaai/iiaiaai2020.html#NakagawaSK020

  • RIC-NN: A Robust Transferable Deep Learning Framework for Cross-sectional Investment Strategy. Reviewed

    Kei Nakagawa, Masaya Abe, Junpei Komiyama

    7th IEEE International Conference on Data Science and Advanced Analytics(DSAA)   370 - 379   2020( ISBN:9781728182063

     More details

    Authorship:Lead author, Corresponding author   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1109/DSAA49011.2020.00051

    Other URL: https://dblp.uni-trier.de/db/conf/dsaa/dsaa2020.html#NakagawaAK20

  • The Relation between B2B Corporate Brands Elements and Shareholder Values

    MANABE Tomonori, YAMASHIRO Hirochika, NAKAGAWA Kei

    Proceedings of the Annual Conference of JSAI   JSAI2020 ( 0 )   4Rin163 - 4Rin163   2020

     More details

    Authorship:Last author   Publishing type:Research paper (conference, symposium, etc.)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    <p>The challenge in the research for B2B corporate brands is the identification of perception elements and how they should be measured. In this study, we used a new B2B brand rating score, which was developed based on the reputation for the company among people who have a connection with employees of the company. By analyzing the reputation data using the NLP method, we identified the elements of corporate brand perception in the industrial market. And we demonstrated that the impression of the element "high technology, the attractiveness of products" shows higher relevance to corporate value than other features. These findings are important for brand managers who consider B2B corporate branding and stakeholder engagement that link to corporate value.</p>

    DOI: 10.11517/pjsai.jsai2020.0_4rin163

    CiNii Article

  • Deep Learning for Multi-factor Models in Regional and Global Stock Markets Reviewed

    Abe M.

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)   12331 LNAI   87 - 102   2020( ISSN:03029743 ( ISBN:9783030587895

     More details

    Authorship:Last author   Publishing type:Research paper (international conference proceedings)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    DOI: 10.1007/978-3-030-58790-1_6

  • How Do We Predict Stock Returns in the Cross-Section with Machine Learning? Reviewed

    Masaya Abe, Kei Nakagawa

    AICCC 2020: 2020 3rd Artificial Intelligence and Cloud Computing Conference(AICCC)   63 - 69   2020( ISBN:9781450388832

     More details

    Authorship:Last author   Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1145/3442536.3442547

    Other URL: https://dblp.uni-trier.de/db/conf/aiccc/aiccc2020.html#AbeN20

  • Identification of B2B Brand Components and Their Performance’s Relevance Using a Business Card Exchange Network Reviewed

    Tomonori Manabe, Kei Nakagawa, Keigo Hidawa

    PKAW2020(IJCAI2020 Workshop) Proceedings   152 - 167   2020( ISBN:9783030698850, 9783030698867

     More details

    Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1007/978-3-030-69886-7_13

    Other URL: https://dblp.uni-trier.de/db/conf/pkaw/pkaw2020.html#ManabeNH20

  • Analysis of dynamic network structure among financial assets using large-scale dynamic correlation model Reviewed

    Mitsuyoshi Imamura, Kei Nakagawa

    WebDB Forum 2019   69 - 72   2019.09

     More details

    Authorship:Last author  

  • Economic Causal Chain and Predictable Stock Returns Reviewed

    Sashida Shingo, Nakagawa Kei, Izumi Kiyoshi, Sakaji Hiroki

    2019 8th International Congress on Advanced Applied Informatics (IIAI-AAI)   655 - 660   2019.07

     More details

    Publishing type:Research paper (international conference proceedings)   Kind of work:Joint Work   International / domestic magazine:International journal  

    A lead-lag effect in stock markets describes the situation where one (leading) stock return is cross-correlated with another (lagging) stock return at later times. There are various methods for stock return forecasting based on such a lead-lag effect. One of the most representative methods is based on the supply chain network. In this research, we propose a stock return forecasting method with an economic causal chain. The economic causal chain refers to a cause and effect network structure constructed by extracting a description indicating a causal relationship from the texts of Japanese financial statement summaries. We examine whether the lead-lag effect spreads to the 'effect' stock group when there is a large stock fluctuation in the 'cause' stock group in the causal chain. We confirm the profitability of the proposed strategy and the evidence of stock return predictability across causally linked firms in the Japanese stock market.

    DOI: 10.1109/iiai-aai.2019.00136

  • ブラック・リッターマン法を用いたリスクベース・ポートフォリオの拡張 Reviewed

    中川 慧

    ファイナンシャル・プランニング研究   18   22 - 33   2019.03

     More details

    Authorship:Lead author, Last author, Corresponding author   Publishing type:Research paper (scientific journal)  

  • Complex valued risk diversification Reviewed

    Uchiyama Y.

    Entropy   21 ( 2 )   2019.02

     More details

    Authorship:Last author   Publishing type:Research paper (scientific journal)   Kind of work:Joint Work   International / domestic magazine:International journal  

    DOI: 10.3390/e21020119

  • Stock price prediction using k-medoids clustering with indexing dynamic time warping Invited

    Kei Nakagawa, Mitsuyoshi Imamura, Kenichi Yoshida

    Electronics and Communications in Japan   102 ( 2 )   3 - 8   2019.02( ISSN:1942-9541

     More details

    Authorship:Lead author, Corresponding author   Publishing type:Research paper (scientific journal)  

    Various methods to predict stock prices have been studied. In the field of empirical finance, feature values for prediction include “value” and “momentum”. In this research, we use the pattern of stock price fluctuations which has not been fully utilized in the financial market as the input feature of prediction. We extract the representative price fluctuation patterns with k-Medoids Clustering with Indexing Dynamic Time Warping method. This method is k-medoids clustering on dissimilarity matrix using IDTW which measures DTW distance between indexed time-series. We can visualize and grasp a price fluctuation pattern effective for prediction with the proposed method. To demonstrate the advantages of the proposed method, we analyze its performance using TOPIX. Experimental results show that the proposed method is effective for predicting monthly stock price changes.

    DOI: 10.1002/ecj.12140

  • Verification of Lead-Lag Effect in Financial Markets by the Adaptive Elastic Net Regression. Reviewed

    Yusuke Uchiyama, Takanori Kadoya, Kei Nakagawa

    8th International Congress on Advanced Applied Informatics(IIAI-AAI)   693 - 696   2019

     More details

    Publishing type:Research paper (international conference proceedings)  

    DOI: 10.1109/IIAI-AAI.2019.00143

    Other URL: https://dblp.uni-trier.de/db/conf/iiaiaai/iiaiaai2019.html#UchiyamaKN19

  • Relationships between mission statements and protability in scal year 2016 (Preliminary Result)

    KITAJIMA Ryozo, KAMIMURA Ryotaro, SAKAI Hiroyuki, NAKAGAWA Kei

    Proceedings of the Annual Conference of JSAI   JSAI2019 ( 0 )   3A3J1303 - 3A3J1303   2019

     More details

    Authorship:Last author   Publishing type:Research paper (conference, symposium, etc.)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    <p>In this paper, we try to analyze relationships between mission statements and protability. The mission statements are very important messages for companies, because they include founders' spirits, the business policies and so on. Therefore, we consider that mission statements affect protability. Mission statements and protability (The Return On Asset (ROA) was used) were gathered from annual securities reports because descriptions are accurate and reports are easy to obtain. As mission statements were written in natural language and data to be analyzed becomes complicated, a neural computational method called `potential learning' which can interpret internal representations was used. As a result, we found that a generalization performance of the model was 0.6125 (accuracy) and mission statements composed of multiple messages may affect ROA.</p>

    DOI: 10.11517/pjsai.jsai2019.0_3a3j1303

    CiNii Article

  • Relation between B2B Corporate Brands and Shareholder Values

    MANABE Tomonori, NAKAGAWA Kei, YOSHIDA Kenichi

    Proceedings of the Annual Conference of JSAI   JSAI2019 ( 0 )   4Rin126 - 4Rin126   2019

     More details

    Publishing type:Research paper (conference, symposium, etc.)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    <p>It has been reported that the customer satisfaction which represents corporate brand affects future risk of cash flows and shareholder value in B2C companies. In this study, we verify whether the same relationship holds for B2B companies. For that, we used new B2B brand score which was developed based on the reputation for the company among people who have connection with employees of the company. We showed that the B2B brand score is positively associated with shareholder value.</p>

    DOI: 10.11517/pjsai.jsai2019.0_4rin126

    CiNii Article

  • Deep factor model: Explaining deep learning decisions for forecasting stock returns with layer-wise relevance propagation Reviewed

    Nakagawa K.

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)   11054 LNAI   37 - 50   2019( ISSN:03029743 ( ISBN:9783030134624

     More details

    Authorship:Lead author, Corresponding author   Publishing type:Research paper (international conference proceedings)   Kind of work:Joint Work   International / domestic magazine:International journal  

    DOI: 10.1007/978-3-030-13463-1_3

  • Price Fluctuation Patterns of Stock/Exchange/Cryptocurrency Reviewed

    Mitsuyoshi Imamura, Kei Nakagawa, Kenichi Yoshida

    IEEJ Transactions on Electronics, Information and Systems   138 ( 8 )   992 - 998   2018.08( ISSN:0385-4221 ( eISSN:1348-8155

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1541/ieejeiss.138.992

  • Stock Price Prediction using &lt;i&gt;k&lt;/i&gt;-Medoids Clustering with Indexing Dynamic Time Warping Reviewed

    Kei Nakagawa, Mitsuyoshi Imamura, Kenichi Yoshida

    IEEJ Transactions on Electronics, Information and Systems   138 ( 8 )   986 - 991   2018.08( ISSN:0385-4221 ( eISSN:1348-8155

     More details

    Authorship:Lead author, Corresponding author   Publishing type:Research paper (scientific journal)  

    DOI: 10.1541/ieejeiss.138.986

  • マクロ・ファクターの定量化とリスク分析への応用 Reviewed

    伊藤 彰朗, 中川 慧

    証券アナリストジャーナル   56 ( 8 )   80 - 90   2018.08

     More details

    Authorship:Last author, Corresponding author   Publishing type:Research paper (scientific journal)  

  • Stock Price Prediction with Fluctuation Patterns Using Indexing Dynamic Time Warping and $$k^*$$-Nearest Neighbors Reviewed

    Kei Nakagawa, Mitsuyoshi Imamura, Kenichi Yoshida

    New Frontiers in Artificial Intelligence   97 - 111   2018.06( ISSN:0302-9743 ( ISBN:9783319937939, 9783319937946 ( eISSN:1611-3349

     More details

    Authorship:Lead author   Publishing type:Part of collection (book)  

    DOI: 10.1007/978-3-319-93794-6_7

  • Risk-based portfolios with large dynamic covariance matrices Reviewed

    Nakagawa, K., Imamura, M., Yoshida, K.

    International Journal of Financial Studies   6 ( 2 )   2018.05( ISSN:2227-7072

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.3390/ijfs6020052

  • 深層学習を用いたカオス時系列解析によるテクニカル分析 Reviewed

    中川慧, 今村光良

    テクニカルアナリストジャーナル   2017 ( 3 )   1 - 8   2017.07

     More details

    Authorship:Lead author, Corresponding author   Publishing type:Research paper (scientific journal)  

    Other URL: http://orcid.org/0000-0001-5046-8128

  • リスクベース・ポートフォリオの高次モーメントへの拡張 Reviewed

    Kei Nakagawa

    49 - 71   2017.03( ISBN:9784254290264

     More details

    Publishing type:Research paper (scientific journal)   International / domestic magazine:Domestic journal  

  • 非線形共和分関係に基づくペアトレード戦略 Reviewed

    中川慧

    テクニカルアナリストジャーナル   2016 ( 3 )   1 - 8   2016

     More details

    Authorship:Lead author, Corresponding author   Publishing type:Research paper (scientific journal)  

    Other URL: http://orcid.org/0000-0001-5046-8128

▼display all

Books and Other Publications

  • 自然言語処理の導入と活用事例 ー情報検索、情報抽出、文書分類、テキスト要約ー

    高野 海斗, 中川 慧( Role: Contributor ,  大規模言語モデルの金融テキストへの適用)

    技術情報協会  2024.10  ( ISBN:9784867980491

  • 企業会計2023年3月号

    中川 慧, 伊藤友貴( Role: Contributor ,  機械が読む英文開示)

    中央経済社   2023.02 

  • 企業会計 2022年 02月号 [雑誌]

    中川慧, 伊藤友貴( Role: Contributor ,  ブラックボックス解消が進む! テキストマイニング分析の最前線)

    中央経済社  2022.02 

  • ECML PKDD 2018 Workshops

    Kei Nakagawa( Role: Contributor ,  Deep Factor Model)

    Springer  2019.04 

  • New Frontiers in Artificial Intelligence

    Kei Nakagawa( Role: Contributor ,  Stock Price Prediction with Fluctuation Patterns using Indexing Dynamic Time Warping and k∗-Nearest Neighbors)

    Springer International Publishing  2018.06 

  • リスク管理・保険とヘッジ (ジャフィー・ジャーナル)

    中川 慧( Role: Contributor ,  リスクベース・ポートフォリオの高次モーメントへの拡張)

    朝倉書店  2017.04 

▼display all

MISC

  • Direct Reinforcement Learning for Convex Risk Measures

    Mikito Hiruki, Kei Nakagawa

    SSRN   2025

     More details

    Authorship:Last author  

    DOI: 10.2139/ssrn.5225163

  • CFTM: Continuous time fractional topic model OA

    Kei Nakagawa, Kohei Hayashi, Yugo Fujimoto

    2024.01

     More details

    In this paper, we propose the Continuous Time Fractional Topic Model (cFTM),
    a new method for dynamic topic modeling. This approach incorporates fractional
    Brownian motion~(fBm) to effectively identify positive or negative correlations
    in topic and word distribution over time, revealing long-term dependency or
    roughness. Our theoretical analysis shows that the cFTM can capture these
    long-term dependency or roughness in both topic and word distributions,
    mirroring the main characteristics of fBm. Moreover, we prove that the
    parameter estimation process for the cFTM is on par with that of LDA,
    traditional topic models. To demonstrate the cFTM's property, we conduct
    empirical study using economic news articles. The results from these tests
    support the model's ability to identify and track long-term dependency or
    roughness in topics over time.

    Other URL: http://arxiv.org/pdf/2402.01734v1

  • Advances in Language Processing in the Financial and Economic Domain Invited International journal

    Sakaji Hiroki, Nakagawa Kei

    Journal of Natural Language Processing   31 ( 2 )   763 - 768   2024( ISSN:13407619 ( eISSN:21858314

     More details

    Authorship:Last author   Publishing type:Meeting report   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

    DOI: 10.5715/jnlp.31.763

  • A New Initial Distribution for Quantum Generative Adversarial Networks to Load Probability Distributions OA

    Yuichi Sano, Ryosuke Koga, Masaya Abe, Kei Nakagawa

    2023.06

     More details

    Quantum computers are gaining attention for their ability to solve certain
    problems faster than classical computers, and one example is the quantum
    expectation estimation algorithm that accelerates the widely-used Monte Carlo
    method in fields such as finance. A previous study has shown that quantum
    generative adversarial networks(qGANs), a quantum circuit version of generative
    adversarial networks(GANs), can generate the probability distribution necessary
    for the quantum expectation estimation algorithm in shallow quantum circuits.
    However, a previous study has also suggested that the convergence speed and
    accuracy of the generated distribution can vary greatly depending on the
    initial distribution of qGANs' generator. In particular, the effectiveness of
    using a normal distribution as the initial distribution has been claimed, but
    it requires a deep quantum circuit, which may lose the advantage of qGANs.
    Therefore, in this study, we propose a novel method for generating an initial
    distribution that improves the learning efficiency of qGANs. Our method uses
    the classical process of label replacement to generate various probability
    distributions in shallow quantum circuits. We demonstrate that our proposed
    method can generate the log-normal distribution, which is pivotal in financial
    engineering, as well as the triangular distribution and the bimodal
    distribution, more efficiently than current methods. Additionally, we show that
    the initial distribution proposed in our research is related to the problem of
    determining the initial weights for qGANs.

    Other URL: http://arxiv.org/pdf/2306.12303v2

  • Schrödinger Risk Diversification Portfolio OA

    Yusuke Uchiyama, Kei Nakagawa

    2022.02

     More details

    The mean-variance portfolio that considers the trade-off between expected
    return and risk has been widely used in the problem of asset allocation for
    multi-asset portfolios. However, since it is difficult to estimate the expected
    return and the out-of-sample performance of the mean-variance portfolio is
    poor, risk-based portfolio construction methods focusing only on risk have been
    proposed, and are attracting attention mainly in practice. In terms of risk,
    asset fluctuations that make up the portfolio are thought to have common
    factors behind them, and principal component analysis, which is a dimension
    reduction method, is applied to extract the factors. In this study, we propose
    the Schr\"{o}dinger risk diversification portfolio as a factor risk
    diversifying portfolio using Schr\"{o}dinger principal component analysis that
    applies the Schr\"{o}dinger equation in quantum mechanics. The Schr\"{o}dinger
    principal component analysis can accurately estimate the factors even if the
    sample points are unequally spaced or in a small number, thus we can make
    efficient risk diversification. The proposed method was verified to outperform
    the conventional risk parity and other risk diversification portfolio
    constructions.

    Other URL: http://arxiv.org/pdf/2202.09939v1

  • Controlling False Discovery Rates under Cross-Sectional Correlations OA

    Junpei Komiyama, Masaya Abe, Kei Nakagawa, Kenichiro McAlinn

    2021.02

     More details

    We consider controlling the false discovery rate for testing many time series
    with an unknown cross-sectional correlation structure. Given a large number of
    hypotheses, false and missing discoveries can plague an analysis. While many
    procedures have been proposed to control false discovery, most of them either
    assume independent hypotheses or lack statistical power. A problem of
    particular interest is in financial asset pricing, where the goal is to
    determine which ``factors" lead to excess returns out of a large number of
    potential factors. Our contribution is two-fold. First, we show the consistency
    of Fama and French's prominent method under multiple testing. Second, we
    propose a novel method for false discovery control using double bootstrapping.
    We achieve superior statistical power to existing methods and prove that the
    false discovery rate is controlled. Simulations and a real data application
    illustrate the efficacy of our method over existing methods.

    Other URL: http://arxiv.org/pdf/2102.07826v2

  • Improving Nonparametric Classification via Local Radial Regression with an Application to Stock Prediction.

    Ruixing Cao, Akifumi Okuno, Kei Nakagawa, Hidetoshi Shimodaira

    CoRR   abs/2112.13951   2021

     More details

    For supervised classification problems, this paper considers estimating the
    query's label probability through local regression using observed covariates.
    Well-known nonparametric kernel smoother and $k$-nearest neighbor ($k$-NN)
    estimator, which take label average over a ball around the query, are
    consistent but asymptotically biased particularly for a large radius of the
    ball. To eradicate such bias, local polynomial regression (LPoR) and multiscale
    $k$-NN (MS-$k$-NN) learn the bias term by local regression around the query and
    extrapolate it to the query itself. However, their theoretical optimality has
    been shown for the limit of the infinite number of training samples. For
    correcting the asymptotic bias with fewer observations, this paper proposes a
    \emph{local radial regression (LRR)} and its logistic regression variant called
    \emph{local radial logistic regression~(LRLR)}, by combining the advantages of
    LPoR and MS-$k$-NN. The idea is quite simple: we fit the local regression to
    observed labels by taking only the radial distance as the explanatory variable
    and then extrapolate the estimated label probability to zero distance. The
    usefulness of the proposed method is shown theoretically and experimentally. We
    prove the convergence rate of the $L^2$ risk for LRR with reference to
    MS-$k$-NN, and our numerical experiments, including real-world datasets of
    daily stock indices, demonstrate that LRLR outperforms LPoR and MS-$k$-NN.

    Other URL: https://dblp.uni-trier.de/db/journals/corr/corr2112.html#abs-2112-13951

  • Controlling False Discovery Rates Using Null Bootstrapping.

    Junpei Komiyama, Masaya Abe, Kei Nakagawa, Kenichiro McAlinn

    CoRR   abs/2102.07826   2021

  • Mean-Variance Efficient Reinforcement Learning by Expected Quadratic Utility Maximization OA

    Masahiro Kato, Kei Nakagawa, Kenshi Abe, Tetsuro Morimura

    2020.10

     More details

    Risk management is critical in decision making, and mean-variance (MV)
    trade-off is one of the most common criteria. However, in reinforcement
    learning (RL) for sequential decision making under uncertainty, most of the
    existing methods for MV control suffer from computational difficulties caused
    by the double sampling problem. In this paper, in contrast to strict MV
    control, we consider learning MV efficient policies that achieve Pareto
    efficiency regarding MV trade-off. To achieve this purpose, we train an agent
    to maximize the expected quadratic utility function, a common objective of risk
    management in finance and economics. We call our approach direct expected
    quadratic utility maximization (EQUM). The EQUM does not suffer from the double
    sampling issue because it does not include gradient estimation of variance. We
    confirm that the maximizer of the objective in the EQUM directly corresponds to
    an MV efficient policy under a certain condition. We conduct experiments with
    benchmark settings to demonstrate the effectiveness of the EQUM.

    Other URL: http://arxiv.org/pdf/2010.01404v3

  • NAPLES;Mining the lead-lag Relationship from Non-synchronous and High-frequency Data OA

    Katsuya Ito, Kei Nakagawa

    2020.02

     More details

    In time-series analysis, the term "lead-lag effect" is used to describe a
    delayed effect on a given time series caused by another time series. lead-lag
    effects are ubiquitous in practice and are specifically critical in formulating
    investment strategies in high-frequency trading. At present, there are three
    major challenges in analyzing the lead-lag effects. First, in practical
    applications, not all time series are observed synchronously. Second, the size
    of the relevant dataset and rate of change of the environment is increasingly
    faster, and it is becoming more difficult to complete the computation within a
    particular time limit. Third, some lead-lag effects are time-varying and only
    last for a short period, and their delay lengths are often affected by external
    factors. In this paper, we propose NAPLES (Negative And Positive lead-lag
    EStimator), a new statistical measure that resolves all these problems. Through
    experiments on artificial and real datasets, we demonstrate that NAPLES has a
    strong correlation with the actual lead-lag effects, including those triggered
    by significant macroeconomic announcements.

    Other URL: http://arxiv.org/pdf/2002.00724v1

  • Policy Gradient with Expected Quadratic Utility Maximization: A New Mean-Variance Approach in Reinforcement Learning.

    Masahiro Kato, Kei Nakagawa

    CoRR   abs/2010.01404   2020

     More details

    In real-world decision-making problems, risk management is critical. Among various risk management approaches, the mean-variance criterion is one of the most widely used in practice. In this paper, we suggest expected quadratic utility maximization (EQUM) as a new framework for policy gradient style reinforcement learning (RL) algorithms with mean-variance control. The quadratic utility function is a common objective of risk management in finance and economics. The proposed EQUM framework has several interpretations, such as reward-constrained variance minimization and regularization, as well as agent utility maximization. In addition, the computation of the EQUM framework is easier than that of existing mean-variance RL methods, which require double sampling. In experiments, we demonstrate the effectiveness of the proposed framework in the benchmarks of RL and financial data.

    Other URL: https://dblp.uni-trier.de/db/journals/corr/corr2010.html#abs-2010-01404

  • Supervised Topic Modelを用いたB2B企業ブランド形成要因の分析

    真鍋友則, 高橋寛治, 中川慧

    言語処理学会年次大会発表論文集(Web)   26th   2020( ISSN:2188-4420

     More details

  • Deep Recurrent Factor Model: Interpretable Non-Linear and Time-Varying Multi-Factor Model OA

    Kei Nakagawa, Tomoki Ito, Masaya Abe, Kiyoshi Izumi

    2019.01

     More details

    A linear multi-factor model is one of the most important tools in equity
    portfolio management. The linear multi-factor models are widely used because
    they can be easily interpreted. However, financial markets are not linear and
    their accuracy is limited. Recently, deep learning methods were proposed to
    predict stock return in terms of the multi-factor model. Although these methods
    perform quite well, they have significant disadvantages such as a lack of
    transparency and limitations in the interpretability of the prediction. It is
    thus difficult for institutional investors to use black-box-type machine
    learning techniques in actual investment practice because they should show
    accountability to their customers. Consequently, the solution we propose is
    based on LSTM with LRP. Specifically, we extend the linear multi-factor model
    to be non-linear and time-varying with LSTM. Then, we approximate and linearize
    the learned LSTM models by LRP. We call this LSTM+LRP model a deep recurrent
    factor model. Finally, we perform an empirical analysis of the Japanese stock
    market and show that our recurrent model has better predictive capability than
    the traditional linear model and fully-connected deep learning methods.

    Other URL: http://arxiv.org/pdf/1901.11493v1

▼display all

Presentations

  • LLMsのバイアスとAIトレードが金融市場に与える影響 Invited

    中川慧

    JSAI2025 企画セッション「AIエージェントと資産運用の未来」  2025.05 

     More details

    Presentation type:Public lecture, seminar, tutorial, course, or other speech  

  • 投資意思決定情報の提供を目的としたインフラ価値評価フレームワークの提案

    石川 大智, 中川 慧, 本田 利器

    第39回人工知能学会全国大会  2025.05 

     More details

    Presentation type:Oral presentation (general)  

  • Network Power Indexの数学的定式化の再考

    赤松 朋哉, 中川 慧

    第39回人工知能学会全国大会  2025.05 

     More details

    Presentation type:Oral presentation (general)  

  • MD&A開示の定性情報が利益反応係数に与える影響

    屋嘉比 潔, 黒木 裕鷹, 中川 慧

    第39回人工知能学会全国大会  2025.05 

     More details

    Presentation type:Oral presentation (general)  

  • Neural Additive Modelsの株式ファクターモデルへの応用

    真辺 幸喜, 中川 慧

    第39回人工知能学会全国大会  2025.05 

     More details

    Presentation type:Oral presentation (general)  

  • Plug-FIN:LLMを用いた擬似ラベリングによる投資戦略探索

    伊藤 克哉, 中川 慧

    第39回人工知能学会全国大会  2025.05 

     More details

    Presentation type:Oral presentation (general)  

  • SAR衛星画像を用いたホームセンターの売上予測

    市川 佳彦, 須賀 圭一, 高野 海斗, 中川 慧

    第39回人工知能学会全国大会  2025.05 

     More details

    Presentation type:Oral presentation (general)  

  • Stein particle filterによるボラティリティ推定

    内山 祐介, 中川 慧

    第39回人工知能学会全国大会  2025.05 

     More details

    Presentation type:Oral presentation (general)  

  • 効用を考慮した行列分解に基づく株式推薦

    櫻井 慶悟, 小川 貴弘, 長谷山 美紀, 阿南 晏樹, 中川 慧

    第39回人工知能学会全国大会  2025.05 

     More details

    Presentation type:Oral presentation (general)  

  • 取締役のスキル・マトリックス推定と企業特性の関連性分析

    高野 海斗, 山脇 大, 田村 光太郎, 中川 慧

    第39回人工知能学会全国大会  2025.05 

     More details

    Presentation type:Oral presentation (general)  

  • 取締役推薦理由文を用いた取締役のスキル・マトリックス分類モデルの開発

    山脇 大, 野中 賢也, 田村 光太郎, 高野 海斗, 中川 慧

    言語処理学会第31回年次大会(NLP2025)  2025.03 

     More details

    Presentation type:Oral presentation (general)  

  • エネルギー関連コモディティ先物市場におけるベージュブックテキストの実証分析

    市川 佳彦, 高野 海斗, 中川 慧

    言語処理学会第31回年次大会(NLP2025)  2025.03 

     More details

    Presentation type:Oral presentation (general)  

  • 重み付きTsallisエントロピー正則化に基づくリスクパリティ・ポートフォリオの一般化

    中川 慧, 土屋 平

    人工知能学会金融情報研究会第34回研究会  2025.03 

     More details

    Presentation type:Oral presentation (general)  

  • 機械学習を用いたクロスセクション予測における株価および業績シグナルの比較分析

    小田 直輝, 中川 慧, 星野 崇宏

    人工知能学会金融情報研究会第34回研究会  2025.03 

     More details

    Presentation type:Oral presentation (general)  

  • アート資産の分散投資効果の実証分析

    森田 梨加, 町田 奈津美, 山本 康介, 中川 慧, 星野 崇宏

    人工知能学会金融情報研究会第34回研究会  2025.03 

     More details

    Presentation type:Oral presentation (general)  

  • Multi-step Utility Lossを用いた深層学習モデルよる動的ポートフォリオ最適化

    久保 健治, 中川 慧

    人工知能学会金融情報研究会第34回研究会  2025.03 

     More details

    Presentation type:Oral presentation (general)  

  • 機械学習による企業業種分類の定量評価と応用

    屋嘉比 潔, 中川 慧

    人工知能学会金融情報研究会第34回研究会  2025.03 

     More details

    Presentation type:Oral presentation (general)  

  • Prices of Risk Estimation for Commodity Factors

    酒本隆太, 中川慧

    日本ファイナンス学会第6回秋季研究大会  2024.11 

     More details

    Presentation type:Oral presentation (general)  

  • リスク回避型効用関数を用いた深層学習によるポートフォリオ最適化

    久保 健治, 中川 慧

    人工知能学会金融情報研究会第33回研究会  2024.10 

     More details

    Presentation type:Oral presentation (general)  

  • 大規模言語モデルを用いた金融テキスト二値分類タスクの定義文生成とチューニング手法の提案

    高野 海斗, 中川 慧, 藤本 悠吾

    人工知能学会金融情報研究会第33回研究会  2024.10 

     More details

    Presentation type:Oral presentation (general)  

  • SAR衛星画像を用いたテーマパーク来場者数推定および売上予測

    市川 佳彦, 伊達 裕人, 那須田 哲也, 高野 海斗, 中川 慧

    人工知能学会金融情報研究会第33回研究会  2024.10 

     More details

    Presentation type:Oral presentation (general)  

  • 会計基準グラフを用いた質問応答モデルの構築 収益認識基準を用いた実験"

    増田 樹, 中川 慧, 星野 崇宏

    人工知能学会金融情報研究会第33回研究会  2024.10 

     More details

    Presentation type:Oral presentation (general)  

  • 日本企業データを用いた機械学習による利益変化の予測

    屋嘉比 潔, 黒木 裕鷹, 中川 慧

    人工知能学会金融情報研究会第33回研究会  2024.10 

     More details

    Presentation type:Oral presentation (general)  

  • 大規模言語モデルを活用した金融センチメント分析における企業固有バイアスの評価

    中川 慧, 平野 正徳, 藤本 悠吾

    第21回テキストアナリティクス・シンポジウム  2024.09 

     More details

    Presentation type:Oral presentation (general)  

  • 大規模言語モデルを用いたテキストの二値分類における定義文自動生成

    高野 海斗, 中川 慧, 藤本 悠吾

    第21回テキストアナリティクス・シンポジウム  2024.09 

     More details

    Presentation type:Oral presentation (general)  

  • ChatGPTによる公認会計士短答式試験(企業法)のパフォーマンス分析

    増田 樹, 中川 慧, 高野 海斗, 星野 崇宏

    第21回テキストアナリティクス・シンポジウム  2024.09 

     More details

    Presentation type:Oral presentation (general)  

  • SBLM: Spike and Slab 事前分布を用いた Sparse Black Litterman Model

    増田 樹, 中川 慧, 星野 崇宏

    第38回人工知能学会全国大会  2024.05 

     More details

    Presentation type:Poster presentation  

  • 主成分等価法による残差リターン抽出

    今城 健太郎, 中川 慧, 的矢 知樹, 平野 正徳, 青木 雅奈, 今長谷 拓

    第38回人工知能学会全国大会  2024.05 

     More details

    Presentation type:Oral presentation (general)  

  • AIトレーダーが市場へ与える影響 -GARCH型モデルのミクロ的基礎づけによる検討

    中川 慧, 平野 正徳, 南 賢太郎, 水田 孝信

    第38回人工知能学会全国大会  2024.05 

     More details

    Presentation type:Poster presentation  

  • DDSTM:Spike and Slab 事前分布を用いた動的スパース・トピックモデル

    増田 樹, 中川 慧, 星野 崇宏

    言語処理学会第30回年次大会(NLP2024)  2024.03 

     More details

    Presentation type:Oral presentation (general)  

  • 大規模言語モデルを用いた金融テキストに対する推論ベースの極性付与

    高野 海斗, 中川 慧

    言語処理学会第30回年次大会(NLP2024)  2024.03 

     More details

    Presentation type:Oral presentation (general)  

  • 加法構成性を活用した最適輸送による文書類似度の定量化

    赤松 朋哉, 中川 慧

    言語処理学会第30回年次大会(NLP2024)  2024.03 

     More details

    Presentation type:Oral presentation (general)  

  • 企業の環境活動における収益性の関係解析と改善案の自動生成

    児玉 実優, 酒井 浩之, 永並 健吾, 高野 海斗, 中川 慧

    言語処理学会第30回年次大会(NLP2024)  2024.03 

     More details

    Presentation type:Oral presentation (general)  

  • Beige Bookのセンチメントとマクロ経済データを用いた米国金利変動予測

    藤原 真幸, 中川 慧, 水門 善之, 秋田 祐哉

    言語処理学会第30回年次大会(NLP2024)  2024.03 

     More details

    Presentation type:Oral presentation (general)  

  • マクロ経済データと Beige Book を用いた金融政策決定前の資産価格変動予測 Domestic conference

    藤原 真幸, 中川 慧, 水門 善之, 秋田 祐哉

    人工知能学会金融情報研究会第34回研究会  2024.03 

     More details

    Presentation type:Oral presentation (general)  

  • 凸リスク尺度に基づく再帰的強化学習

    比留木幹人, 中川 慧

    人工知能学会金融情報研究会第32回研究会  2024.03 

     More details

    Presentation type:Oral presentation (general)  

  • Doubly Robust Mean-CVaR Portfolio

    中川慧, 阿部真也, 黒木誠一

    第26回情報論的学習理論ワークショップ  2023.10 

     More details

    Presentation type:Poster presentation  

  • ディープ・ヘッジとデルタヘッジの関連性と統計的裁定戦略の活用

    堀川 弘晃, 中川 慧

    人工知能学会金融情報研究会第31回研究会  2023.10 

     More details

    Presentation type:Oral presentation (general)  

  • 機械学習によるバリュエーションマルチプルの要因分解

    榎本佳朗, 中川 慧

    人工知能学会金融情報研究会第31回研究会  2023.10 

     More details

    Presentation type:Oral presentation (general)  

  • ChatGPTを活用した運用報告書の市況コメントの自動生成

    高野 海斗, 中川 慧, 藤本 悠吾

    人工知能学会金融情報研究会第31回研究会  2023.10 

     More details

    Presentation type:Oral presentation (general)  

  • 単調回帰を用いた一般化トレンド・ファクター:暗号資産市場への応用

    中川 慧, 南 賢太郎

    人工知能学会金融情報研究会第31回研究会  2023.10 

     More details

    Presentation type:Oral presentation (general)  

  • 企業における環境活動の改善案の自動生成

    児玉 実優, 酒井 浩之, 永並 健吾, 高野 海斗, 中川 慧

    人工知能学会金融情報研究会第31回研究会  2023.10 

     More details

    Presentation type:Oral presentation (general)  

  • ChatGPTは公認会計士試験を突破できるか?: 短答式試験監査論への挑戦

    増田 樹, 中川 慧, 星野 崇宏

    人工知能学会金融情報研究会第31回研究会  2023.10 

     More details

    Presentation type:Oral presentation (general)  

  • 決算説明会テキストデータに含まれる主観的表現の抽出とその使用傾向の分析

    黒木 裕鷹, 中川 慧

    人工知能学会金融情報研究会第31回研究会  2023.10 

     More details

    Presentation type:Oral presentation (general)  

  • 決算説明会テキストデータの感情極性と株式リターンの分析

    黒木 裕鷹, 真鍋 友則, 指田 晋吾, 中川 慧

    人工知能学会金融情報研究会第29回研究会  2023.10 

     More details

    Presentation type:Oral presentation (general)  

  • 業績文の分析を目的とした文中の区切り位置推定

    高野 海斗, 中川 慧, 酒井 浩之

    第20回テキストアナリティクス・シンポジウム  2023.09 

     More details

    Presentation type:Oral presentation (general)  

  • 深層学習の成功事例の分析と金融実務への応用 Invited

    中川慧

    MPTフォーラム  2023.09 

  • 局所動径回帰を用いた最適なノンパラメトリック分類と株価予測への応用

    奥野 彰文, 操 瑞行, 中川 慧, 下平 英寿

    2023年度統計関連学会連合大会  2023.09 

     More details

    Presentation type:Oral presentation (general)  

  • 自然言語処理技術の資産運用への応用 Invited

    中川慧

    日本テクニカルアナリスト協会  2023.07 

  • 予測型フルスケール最適化による資産配分

    南 賢太郎, 今城 健太郎, 中川 慧, 今長谷 拓

    第36回人工知能学会全国大会  2023.06 

     More details

    Presentation type:Oral presentation (general)  

  • FRBベージュブックコーパスの構築と分析

    高野 海斗, 長谷川 直弘, 内藤 麻人, 中川 慧

    第37回人工知能学会全国大会  2023.06 

     More details

    Presentation type:Poster presentation  

  • 平均CVaRポートフォリオの二重ロバスト化

    中川 慧, 阿部 真也, 黒木 誠一

    第37回人工知能学会全国大会  2023.06 

     More details

    Presentation type:Poster presentation  

  • 局所的説明を考慮した深層マルチファクター戦略のための大域的サロゲートモデル

    藤本 悠吾, 中川 慧

    第37回人工知能学会全国大会  2023.06 

     More details

    Presentation type:Poster presentation  

  • 一般化双極型分布にしたがう確率過程の機械学習への応用

    内山 祐介, 中川 慧, 濃野 歩, 林 晃平

    第37回人工知能学会全国大会  2023.06 

     More details

    Presentation type:Oral presentation (general)  

  • 金融オプション価格計算のための初期分布生成を伴う量子GAN

    佐野 裕一, 古賀 亮佑, 阿部 真也, 中川 慧

    第37回人工知能学会全国大会  2023.06 

     More details

    Presentation type:Oral presentation (general)  

  • 最適輸送理論とリッチ曲率による金融ネットワークリスクの定量化

    赤松 朋哉, 中川 慧

    第37回人工知能学会全国大会  2023.06 

     More details

    Presentation type:Oral presentation (general)  

  • 大規模言語モデルによる事業概要を考慮した金融テキストの推論ベース極性分析

    高野 海斗, 中川 慧

    第38回人工知能学会全国大会  2023.05 

     More details

    Presentation type:Poster presentation  

  • 確率分布生成のための量子GANに対する新しい初期分布の提案

    佐野 裕一, 古賀 亮佑, 阿部 真也, 中川 慧

    第47回量子情報技術研究会  2023.05 

     More details

    Presentation type:Oral presentation (general)  

  • 中央銀行の要人発言に対するタカ・ハト極性付与タスクの検討

    高野 海斗, 内藤 麻人, 長谷川 直弘, 中川 慧

    言語処理学会第29回年次大会(NLP2023)  2023.03 

     More details

    Presentation type:Oral presentation (general)  

  • 連続時間フラクショナル・トピックモデル

    中川 慧, 林 晃平, 藤本 悠吾

    言語処理学会第29回年次大会(NLP2023)  2023.03 

     More details

    Presentation type:Oral presentation (general)  

  • 決算説明会のテキスト特徴と株主資本コストの関連性

    真鍋 友則, 黒木 裕鷹, 中川 慧

    言語処理学会第29回年次大会(NLP2023)  2023.03 

     More details

    Presentation type:Oral presentation (general)  

  • 深層学習の金融実務への応用 Invited

    中川慧

    人工知能学会 金融情報学研究会(SigFin)金融情報学セミナー  2023.01 

  • 人工知能と投資 Invited

    中川慧

    日本CFA協会  2022.12 

  • Neural Fractional SDE-Netによる低正則パスを持つ金融時系列生成

    林 晃平, 中川 慧

    人工知能学会金融情報研究会第29回研究会  2022.10 

     More details

    Presentation type:Oral presentation (general)  

  • 不確実性を考慮したトレーダー・カンパニー法による解釈可能な株価予測

    藤本 悠吾, 中川 慧, 今城 健太郎, 南 賢太郎

    人工知能学会金融情報研究会第29回研究会  2022.10 

     More details

    Presentation type:Oral presentation (general)  

  • 確率制御を用いた暗号資産販売所における最適流動化戦略

    久保 健治, 中川 慧, 水上 大樹, Dipesh Acharya

    人工知能学会金融情報研究会第29回研究会  2022.10 

     More details

    Presentation type:Oral presentation (general)  

  • 決算説明会に関する情報開示の効果検証

    真鍋 友則, 黒木 裕鷹, 指田 晋吾, 中川 慧

    人工知能学会金融情報研究会第29回研究会  2022.10 

     More details

    Presentation type:Oral presentation (general)  

  • 統合報告書からの企業特有の競争優位性を表した文の抽出

    菅原 佑, 酒井 浩之, 永並 健吾, 高野 海斗, 中川 慧

    第19回テキストアナリティクス・シンポジウム  2022.09 

     More details

    Presentation type:Oral presentation (general)  

  • 有価証券報告書からの将来の配当政策文のテキストマイニング

    高野 海斗, 岡田 知樹, 清水 裕介, 中川 慧

    第36回人工知能学会全国大会  2022.06 

     More details

    Presentation type:Oral presentation (general)  

  • 統合報告書からのESG関連情報の自動抽出

    児玉 実優, 酒井 浩之, 永並 健吾, 高野 海斗, 中川 慧

    第36回人工知能学会全国大会  2022.06 

     More details

    Presentation type:Oral presentation (general)  

  • 株価予測のためのMultiple-World Trader-Company法の提案とレジーム変化に対するロバスト性の評価

    山内 智貴, 中川 慧, 南 賢太郎, 今城 健太郎

    第36回人工知能学会全国大会  2022.06 

     More details

    Presentation type:Oral presentation (general)  

  • Neural Fractional SDE-Netによる長期記憶時系列生成

    林 晃平, 中川 慧

    第36回人工知能学会全国大会  2022.06 

     More details

    Presentation type:Oral presentation (general)  

  • Exchanger Rate Forecasting with Fundamentals: The Trader-Company Method

    岩壷 健太郎, 中川 慧

    第30回日本ファイナンス学会  2022.06 

     More details

    Presentation type:Oral presentation (general)  

  • Estimation of Option’s Continuation Value using Neural Networksの討論者 Invited

    中川 慧

    第30回日本ファイナンス学会  2022.06 

     More details

    Presentation type:Oral presentation (general)  

  • ECS-BERTモデルによるステークホルダー評価の定量化

    指田晋吾, 中川慧, 黒木裕鷹, 真鍋友則

    言語処理学会第28回年次大会(NLP2022)  2022.03 

     More details

    Presentation type:Poster presentation  

  • Neural Fractional SDE-Netによる金融時系列生成

    林晃平, 中川慧

    人工知能学会金融情報研究会第28回研究会  2022.03 

     More details

    Presentation type:Oral presentation (general)  

  • Thompson Samplingを用いた複数ポートフォリオの合成戦略

    藤島 圭吾, 中川 慧

    人工知能学会金融情報研究会第27回研究会  2021.10 

     More details

    Presentation type:Oral presentation (general)  

  • 機械学習を用いた統合報告書のESG関連ページの推定

    河村 康平, 高野 海斗, 酒井 浩之, 永並 健吾, 中川 慧

    人工知能学会金融情報研究会第27回研究会  2021.10 

     More details

    Presentation type:Oral presentation (general)  

  • 局所平衡性に基づいた非正規性と非対称性を有するリターン変動のモデル化

    内山 祐介, 中川 慧

    JAFEE2021夏季大会  2021.08 

     More details

    Presentation type:Oral presentation (general)  

  • コロナウイルス・ショックにおける社会関係資本の価値

    真鍋 友則, 中川 慧

    第35回人工知能学会全国大会  2021.06 

     More details

    Presentation type:Oral presentation (general)  

  • RM-CVaRポートフォリオによるキャリー戦略

    伊藤 彰朗, 中川 慧

    第35回人工知能学会全国大会  2021.06 

     More details

    Presentation type:Oral presentation (general)  

  • 業績要因の極性付与を目的とした文の区切り位置推定

    高野 海斗, 酒井 浩之, 中川 慧

    言語処理学会第27回年次大会(NLP2021)  2021.03 

     More details

    Presentation type:Oral presentation (general)  

  • SESTM モデルによる会社四季報センチメントを用いた投資戦略の実証分析

    指田 晋吾, 中川 慧

    言語処理学会第27回年次大会(NLP2021)  2021.03 

     More details

    Presentation type:Poster presentation  

  • シュレーディンガー・リスクパリティポートフォリオ

    内山祐介, 中川慧

    人工知能学会金融情報研究会第26回研究会  2021.03 

     More details

    Presentation type:Oral presentation (general)  

  • 効率的なDeep Hedgingのためのニューラルネットワーク構造の提案

    今木 翔太, 今城 健太郎, 伊藤 克哉, 南 賢太郎, 中川 慧

    人工知能学会金融情報研究会第26回研究会  2021.03 

     More details

    Presentation type:Oral presentation (general)  

  • 非同期時系列のLead-lag効果推定のための新しい推定量

    伊藤 克哉, 中川 慧

    人工知能学会金融情報研究会第26回研究会  2021.03 

     More details

    Presentation type:Oral presentation (general)  

  • 株価の残差リターンに注目した深層学習ポートフォリオ最適化

    今城健太郎, 南賢太郎, 伊藤克哉, 中川慧

    人工知能学会金融情報研究会第26回研究会  2021.03 

     More details

    Presentation type:Oral presentation (general)  

  • 株価の残差リターンに注目した深層学習ポートフォリオ最適化 Invited

    今城健太郎, 南賢太郎, 伊藤克哉, 中川慧

    IBISML研究会  2021.03 

     More details

    Presentation type:Oral presentation (invited, special)  

  • t過程ボラティリティ変動モデル

    濃野 歩, 内山 祐介, 中川 慧

    人工知能学会金融情報研究会第25回研究会  2020.10 

     More details

    Presentation type:Oral presentation (general)  

  • 解釈性を持つマクロファクター構成手法

    野間 修平, 中川 慧, 伊藤 彰朗

    人工知能学会金融情報研究会第25回研究会  2020.10 

     More details

    Presentation type:Oral presentation (general)  

  • 解釈性を持つリスクファクター構成手法に関する研究

    野間 修平, 中川 慧

    JAFEE2020夏季大会  2020.08 

     More details

    Presentation type:Oral presentation (general)  

  • 確率的ボラティリティモデルに対する可解な動的ポー トフォリオ問題

    内山 祐介, 中川 慧

    JAFEE2020夏季大会  2020.08 

     More details

    Presentation type:Oral presentation (general)  

  • リスク資産が確率的ボラティリティモデルに従う動的ポートフォリオ問題におけるHamilton-Jacobi-Bellman方程式の可積分構造

    内山 祐介, 中川 慧

    日本ファイナンス学会第28回大会  2020.06 

     More details

    Presentation type:Oral presentation (general)  

  • Trader-Company法:メタヒューリスティクスを用いた株価予測

    伊藤 克哉, 南 賢太郎, 今城 健太郎, 中川 慧

    第34回人工知能学会全国大会  2020.06 

     More details

    Presentation type:Oral presentation (general)  

  • 株価の残差リターンに注目した深層学習ポートフォリオ最適化

    今城 健太郎, 南 賢太郎, 伊藤 克哉, 中川 慧

    第34回人工知能学会全国大会  2020.06 

     More details

    Presentation type:Oral presentation (general)  

  • RIC-NN:深層転移学習を用いたマルチファクター運用

    中川 慧, 阿部 真也, 小宮山 純平

    第34回人工知能学会全国大会  2020.06 

     More details

    Presentation type:Oral presentation (general)  

  • 地域別およびグローバル株式市場における深層学習を用いたマルチファクター運用とその解釈 Domestic conference

    阿部 真也, 中川 慧

    第34回人工知能学会全国大会  2020.06 

     More details

    Presentation type:Oral presentation (general)  

  • 深層学習を用いた株主招集通知の重要ページ抽出

    高野 海斗, 酒井 浩之, 中川 慧

    第34回人工知能学会全国大会  2020.06 

     More details

    Presentation type:Oral presentation (general)  

  • テキストマイニングを用いた株主招集通知の重要ページ抽出

    高野海斗, 酒井浩之, 中川 慧

    言語処理学会第26回年次大会(NLP2020)  2020.03 

     More details

    Presentation type:Oral presentation (general)  

  • Supervised Topic Modelを用いたB2B企業ブランド形成要因の分析

    真鍋友則, 高橋寛治, 中川慧

    言語処理学会第26回年次大会(NLP2020)  2020.03 

     More details

    Presentation type:Oral presentation (general)  

  • 日本株式市場におけるテキストベース・モメンタムの実証分析

    木村友哉, 中川 慧

    言語処理学会第26回年次大会(NLP2020)  2020.03 

     More details

    Presentation type:Oral presentation (general)  

  • Relationship between corporate brand and ROA in industrial markets

    真鍋 友則, 中川 慧

    人工知能学会金融情報研究会第24回研究会  2020.03 

     More details

    Presentation type:Oral presentation (general)  

  • 新興市場を対象とした市況情報の抽出

    高野 海斗, 神田 裕輝, 酒井 浩之, 北島 良三, 中川 慧

    人工知能学会金融情報研究会第24回研究会  2020.03 

     More details

    Presentation type:Oral presentation (general)  

  • A Robust Transferable Deep Learning Framework for Cross-sectional Investment Strategy International coauthorship

    Kei Nakagawa, Masaya Abe, Junpei Komiyama

    AAAI-20 Workshop on Knowledge Discovery from Unstructured Data in Financial Services (KDF20)  2019.10 

     More details

    Stock return predictability is an important research theme as it reflects our
    economic and social organization, and significant efforts are made to explain
    the dynamism therein. Statistics of strong explanative power, called "factor"
    have been proposed to summarize the essence of predictive stock returns.
    Although machine learning methods are increasingly popular in stock return
    prediction, an inference of the stock returns is highly elusive, and still most
    investors, if partly, rely on their intuition to build a better decision
    making. The challenge here is to make an investment strategy that is consistent
    over a reasonably long period, with the minimum human decision on the entire
    process. To this end, we propose a new stock return prediction framework that
    we call Ranked Information Coefficient Neural Network (RIC-NN). RIC-NN is a
    deep learning approach and includes the following three novel ideas: (1)
    nonlinear multi-factor approach, (2) stopping criteria with ranked information
    coefficient (rank IC), and (3) deep transfer learning among multiple regions.
    Experimental comparison with the stocks in the Morgan Stanley Capital
    International (MSCI) indices shows that RIC-NN outperforms not only
    off-the-shelf machine learning methods but also the average return of major
    equity investment funds in the last fourteen years.

    Other Link: http://arxiv.org/pdf/1910.01491v1

  • Deep Recurrent Factor Model International conference

    Kei Nakagawa, Tomoki Ito, Masaya Abe, Kiyoshi Izumi

    AAAI-19 Network Interpretability for Deep Learning  2019.01 

     More details

    Presentation type:Oral presentation (general)  

  • Investment Strategy on Specific Returns in Multi-asset Market International conference

    Akio Ito, Kei Nakagawa

    International Workshop:Digital Innovation in Finance  2018.12 

     More details

    Presentation type:Oral presentation (general)  

  • 金融時系列のための深層t過程回帰モデル Domestic conference

    中川 慧, 角屋 貴則, 内山 祐介

    人工知能学会金融情報研究会第21回研究会  2018.10 

     More details

    Presentation type:Oral presentation (general)  

  • 深層学習を用いたマルチファクター運用の実証分析 Domestic conference

    阿部 真也, 中川 慧

    人工知能学会金融情報研究会第21回研究会  2018.10 

     More details

    Presentation type:Oral presentation (general)  

  • Deep Factor Model International conference

    Kei Nakagawa, Takumi Uchida, Tomohisa Aoshima

    3rd Workshop on MIning DAta for financial applicationS MIDAS @ECML-PKDD 2018  2018.09 

     More details

    Presentation type:Oral presentation (general)  

  • ブラック・リッターマン法を用いたリスクベース・ポートフォリオの拡張 Domestic conference

    中川 慧

    日本FP学会第19回大会  2018.09 

     More details

    Presentation type:Oral presentation (general)  

  • ベンチマークデータを用いた時系列勾配ブースティング木の実験評価 Domestic conference

    今村 光良, 中川 慧, 吉田 健一

    第32回人工知能学会全国大会  2018.06 

     More details

    Presentation type:Poster presentation  

  • 時系列勾配ブースティング木による分類学習 金融時系列予測への応用 Domestic conference

    中川 慧, 今村 光良, 吉田 健一

    第32回人工知能学会全国大会  2018.06 

     More details

    Presentation type:Oral presentation (general)  

  • 半教師学習と特異値分解によるCold-Start問題へのアプローチ Domestic conference

    内田 匠, 中川 慧, 吉田 健一

    第32回人工知能学会全国大会  2018.06 

     More details

    Presentation type:Oral presentation (general)  

  • GARCHSKモデルを用いた条件付き固有モーメントの実証分析 Domestic conference

    中川 慧

    日本ファイナンス学会第26回大会  2018.05 

     More details

    Presentation type:Oral presentation (invited, special)  

  • ダークネット観測情報を用いた仮想通貨市場におけるリスクの考察 -仮想通貨市場におけるオルタナティブ・データの活用- Domestic conference

    中川 慧, 今村 光良, 面 和成

    人工知能学会金融情報研究会第20回研究会  2018.03 

     More details

    Presentation type:Oral presentation (general)  

  • GPU を用いた大規模金融時系列リスク推定の試み Domestic conference

    今村 光良, 中川 慧

    GPU Technology Conference JAPAN(GTC JAPAN 2017)  2017.12 

     More details

    Presentation type:Poster presentation  

  • Stock Price Prediction using k*-Nearest Neighbors and Indexing Dynamic Time Warping International conference

    Kei Nakagawa, Mitsuyoshi Imamura, Kenichi Yoshida

    International Workshop: Artificial Intelligence of and for Business (AI-Biz2017)  2017.11 

     More details

    Presentation type:Oral presentation (general)  

    Other Link: http://orcid.org/0000-0001-5046-8128

  • 機械学習を用いた共和分ペア・トレード戦略 Domestic conference

    今村 光良, 中川 慧, 吉田 健一

    人工知能学会金融情報研究会第19回研究会  2017.10 

     More details

    Presentation type:Oral presentation (general)  

  • ブロックチェーン技術に関する分析および評価 Domestic conference

    今村 光良, 中川 慧, 吉田 健一

    第16回情報科学技術フォーラム(FIT)  2017.09 

     More details

    Presentation type:Oral presentation (general)  

  • 価格変動パターンを用いた市場予測 IDTW Based k-medoids clusteringの株式市場への適用 Domestic conference

    中川 慧, 今村 光良, 吉田 健一

    第16回情報科学技術フォーラム(FIT)  2017.09 

     More details

    Presentation type:Oral presentation (general)  

  • Risk-Based Portfolio with Large Dynamic Covariance Matrices Domestic conference

    中川 慧, 今村 光良, 吉田 健一

    日本ファイナンス学会第25回大会  2017.06 

     More details

    Presentation type:Oral presentation (general)  

  • マクロ・ファクターの定量化とリスク分析への応用 Domestic conference

    伊藤彰朗, 中川 慧

    日本ファイナンス学会第25回大会  2017.06 

     More details

    Presentation type:Oral presentation (general)  

  • 株価変動パターンの類似性を用いた株価予測 Domestic conference

    中川 慧, 今村 光良, 吉田 健一

    第31回人工知能学会全国大会  2017.05 

     More details

    Presentation type:Oral presentation (general)  

  • 資産価格変動パターンの類似性に着目した金融市場予測の評価 Domestic conference

    今村 光良, 中川 慧, 吉田健一

    第31回人工知能学会全国大会  2017.05 

     More details

    Presentation type:Oral presentation (general)  

  • 「サプライヤー・カスタマーのつながりに基づく株価予測可能性」の討論 Invited Domestic conference

    中川 慧

    日本経営財務研究学会第40回全国大会  2016.10 

     More details

    Presentation type:Oral presentation (general)  

  • 債券市場の需給過程に着目した裁定機会検知 Domestic conference

    東出卓朗, 中川 慧

    人工知能学会金融情報研究会第17回研究会  2016.10 

     More details

    Presentation type:Oral presentation (general)  

  • モデル予見制御に基づく共和分ペアトレード戦略 Domestic conference

    中川 慧

    日本ファイナンス学会第23回大会  2015.06 

     More details

    Presentation type:Oral presentation (general)  

  • リスクベース・ポートフォリオの高次モーメントへの拡張 Domestic conference

    中川 慧

    日本ファイナンス学会第24回大会  2015.05 

     More details

    Presentation type:Oral presentation (general)  

▼display all

Works

  • GARCHSK

    Kei Nakagawa

    2021.07
    -
    Now

     More details

    Work type:Software  

  • ksnn

    Kei Nakagawa, Shingo Sashida

    2019.04
    -
    Now

     More details

    Work type:Software  

  • xdcclarge

    Kei Nakagawa, Mitsuyoshi Imamura

    2018.07
    -
    Now

     More details

    Work type:Software  

Charge of off-campus class subject

  • Advanced Artificial Intelligence and Data Science C

    2022.05
    -
    2024.03
    Institution:Tokyo Institute of Technology, School of Computing

  • ファイナンス特別講義(機械学習)

    2021.12
    -
    Now
    Institution:Tokyo Metropolitan University

  • データ駆動型ファイナンス入門

    2021.06

  • リスク工学後期特別講義 (ビジネスリスク)

    2020.04
    -
    2022.03

  • ビジネスマネジメント特別演習1-1

    2020.04
    -
    2021.03

  • 金融レジリエンス情報学

    2020.04
    -
    2021.03

  • Advanced Artificial Intelligence and Data Science D

    2019.12
    -
    2022.03
    Institution:Tokyo Institute of Technology, School of Computing

▼display all

Social Activities ⇒ Link to the list of Social Activities

  • 深層学習のファイナンス応用

    Role(s): Lecturer

    Type: Lecture

    日本テクニカルアナリスト協会  2024.10

  • 深層学習技術の資産運用実務への応用について

    Role(s): Lecturer

    Type: Seminar, workshop

    大阪大学MMDS中之島ワークショップ  2023.11

  • 深層学習の成功事例の分析と金融実務への応用

    Role(s): Lecturer

    Type: Seminar, workshop

    MPTフォーラム  2023.09

  • 自然言語処理技術の資産運用への応用

    Role(s): Lecturer

    Type: Seminar, workshop

    日本テクニカルアナリスト協会  2023.07

  • 深層学習の金融実務への応用

    Role(s): Lecturer

    Type: Seminar, workshop

    人工知能学会金融情報学研究会  金融情報学セミナー  2023.01

  • 金融領域での深層学習の活用

    Role(s): Lecturer

    Type: Seminar, workshop

    日本CFA協会  人工知能と投資  2022.12

  • Ask me anything in マケデコ

    Role(s): Guest

    Type: Citizen’s meeting/Assembly

    Market API Developer Community  2022.10

  • 深層学習による株価予測と資産運用への応用の実際

    Role(s): Lecturer

    Type: Lecture

    日本経済研究センター  AI・ビッグデータ経済モデル研究会  2022.06

  • B2B企業ブランド価値の財務指標・株式市場へのインパクト ~PBR(株価純資産倍率)等への影響~

    Role(s): Lecturer

    Type: Lecture

    日本経済新聞社  ,動き出す無形資産投資!「日本企業のブランド価値金額 生産性/将来利益/株価へのインパクト~Best Japan Brands 2021より~」  2021.03

  • How to Build Investment Strategies with Machine Learning and AI?

    Role(s): Lecturer

    Type: Seminar, workshop

    International Federation of Technical Analysts  IFTA2020  2020.10

  • 【ブラック・リッターマン法を用いたリスクベース・ポートフォリオの拡張】~日本FP学会賞 受賞論文についての概要~

    Role(s): Lecturer

    Type: Certification seminar

    日本FP協会SG勉強会  2019.12

  • セミナー(講演5部):『ファクター投資と機械学習~テクニカルアナリスト必見!AI・クオンツの視点を活かす~』

    Role(s): Lecturer

    Type: Seminar, workshop

    日本テクニカルアナリスト協会  2019.08

  • アセット・アロケーションの未来

    Role(s): Lecturer

    Type: Certification seminar

    日本FP協会SG勉強会  2019.07

  • 機械学習を用いた株式ファクター投資

    Role(s): Lecturer

    Type: Seminar, workshop

    日本CFA協会  ファクター投資の新潮流  2019.06

  • 資産運用におけるオルタナティブ・データの活用の可能性を探る

    Role(s): Panelist

    Type: Seminar, workshop

    Bloomberg  2018.06

  • セミナー(研究Ⅰ部):『クオンツ運用、テクニカル分析、人工知能技術(AI)の融合に向けて』

    Role(s): Panelist, Lecturer

    Type: Seminar, workshop

    日本テクニカルアナリスト協会  2018.05

  • セミナー(研究Ⅰ部):『クオンツ運用における人工知能技術(AI)の活用 』

    Role(s): Lecturer

    Type: Seminar, workshop

    日本テクニカルアナリスト協会  2017.08

  • Model Predictive Control Strategy for Co-integrated Pairs of Stocks

    Role(s): Lecturer

    Type: Seminar, workshop

    International Federation of Technical Analysts  IFTA 2015  2015.10

▼display all

Media Coverage

  • 「学び」で育つAI運用、世界は計算力の競争に Newspaper, magazine

    日本経済新聞社  NIKKEI FINANCIAL  2021.06

  • 投資判断、AI vs 人の時代 運用成績には改善余地 Newspaper, magazine

    日本経済新聞社  日本経済新聞  2019.10

  • 学生インタビュー Internet

    筑波大学大学院ビジネス科学研究科 

Academic Activities

  • JSAI2025オーガナイズドセッション金融・会計・経済における情報学

    Role(s): Planning, management, etc., Panel moderator, session chair, etc.

    人工知能学会2025  2025.05

     More details

    Type:Academic society, research group, etc. 

  • 論文査読8

    Role(s): Peer review

    3rd International Conference on Computational and Data Sciences in Economics and Finance (CDEF 2025)  2025.05

     More details

    Type:Academic society, research group, etc. 

  • 論文査読1

    Role(s): Peer review

    3rd International Conference on Computational and Data Sciences in Economics and Finance (CDEF 2025)  2025.05

     More details

    Type:Academic society, research group, etc. 

  • 論文査読2

    Role(s): Peer review

    3rd International Conference on Computational and Data Sciences in Economics and Finance (CDEF 2025)  2025.05

     More details

    Type:Academic society, research group, etc. 

  • 論文査読3

    Role(s): Peer review

    3rd International Conference on Computational and Data Sciences in Economics and Finance (CDEF 2025)  2025.05

     More details

    Type:Academic society, research group, etc. 

  • 論文査読4

    Role(s): Peer review

    3rd International Conference on Computational and Data Sciences in Economics and Finance (CDEF 2025)  2025.05

     More details

    Type:Academic society, research group, etc. 

  • 論文査読5

    Role(s): Peer review

    3rd International Conference on Computational and Data Sciences in Economics and Finance (CDEF 2025)  2025.05

     More details

    Type:Academic society, research group, etc. 

  • 論文査読6

    Role(s): Peer review

    3rd International Conference on Computational and Data Sciences in Economics and Finance (CDEF 2025)  2025.05

     More details

    Type:Academic society, research group, etc. 

  • 論文査読7

    Role(s): Peer review

    3rd International Conference on Computational and Data Sciences in Economics and Finance (CDEF 2025)  2025.05

     More details

    Type:Academic society, research group, etc. 

  • 論文査読

    Role(s): Peer review

    『経営研究』  2025.04

     More details

    Type:Peer review 

  • 論文査読

    Role(s): Peer review

    Artificial Intelligence Review  2025.04

     More details

    Type:Peer review 

  • Finance Research Letters

    Role(s): Peer review

    Finance Research Letters  2025.04

     More details

    Type:Peer review 

  • NLP2025 テーマセッション1:金融・経済ドメインのための言語処理

    Role(s): Planning, management, etc., Panel moderator, session chair, etc.

    言語処理学会2025  2025.03

     More details

    Type:Academic society, research group, etc. 

  • テーマセッション2:金融・経済ドメインのための言語処理

    Role(s): Planning, management, etc., Panel moderator, session chair, etc.

    言語処理学会  2024.03

     More details

    Type:Academic society, research group, etc. 

  • IJCNN2024 PC Member

    Role(s): Peer review

    IEEE IJCNN  2024.02

     More details

    Type:Academic society, research group, etc. 

  • Special Session on Applied Informatics in Finance and Economics (AIFE)

    Role(s): Planning, management, etc., Panel moderator, session chair, etc.

    14th International Congress on Advanced Applied Informatics (IIAI AAI 2023)  2023.07

     More details

    Type:Academic society, research group, etc. 

  • テーマセッション 1 : 金融・経済ドメインのための言語処理

    Role(s): Planning, management, etc.

    言語処理学会  2023.03

     More details

    Type:Academic society, research group, etc. 

  • SCAI-Session 2(International Conference on Smart Computing and Artificial Intelligence)

    Role(s): Panel moderator, session chair, etc.

    IIAI AAI 2022  2022.07

     More details

    Type:Academic society, research group, etc. 

  • [1A5-GS-2] 機械学習:株価予測

    Role(s): Panel moderator, session chair, etc.

    人工知能学会  2022.06

     More details

    Type:Academic society, research group, etc. 

  • ECML PKDD 2020 PC Member

    Role(s): Peer review

    ECML PKDD  2020.04

     More details

    Type:Academic society, research group, etc. 

  • テーマセッション1:金融・経済ドメインのための言語処理

    Role(s): Planning, management, etc.

    言語処理学会  2020.03

     More details

    Type:Academic society, research group, etc. 

  • Data Science for Economics and Finance: Methodologies and Applications

    Role(s): Review, evaluation, Peer review

    Springer  2020.03 - 2020.05

     More details

    Type:Peer review 

▼display all