Updated on 2025/01/24

写真a

 
OMORI Takeshi
 
Organization
Graduate School of Engineering Division of Mechanical Engineering Associate Professor
School of Engineering Department of Mechanical Engineering
Title
Associate Professor
Affiliation
Institute of Engineering
Affiliation campus
Nakamozu Campus

Position

  • Graduate School of Engineering Division of Mechanical Engineering 

    Associate Professor  2022.04 - Now

  • School of Engineering Department of Mechanical Engineering 

    Associate Professor  2022.04 - Now

Degree

  • 工学博士(Dr.-Ing.) ( Others )

Committee Memberships (off-campus)

  • 高性能計算機システム委員   大阪大学サイバーメディアセンター  

    2009.04 - Now 

Awards

  • Scientific Contribution Award of the Heat Transfer Society of Japan

    Yasutaka Yamaguchi, Donatas Surblys, Takeshi Omori, Hiroki Kusudo

    2020.05   Heat Transfer Society of Japan  

  • 日本機械学会賞(論文)

    足立 理人, 大森 健史, 梶島 岳夫

    2018.04   日本機械学会  

Papers

  • Mechanical and thermodynamic routes to the liquid–liquid interfacial tension and mixing free energy by molecular dynamics Reviewed

    Rei Ogawa, Hiroki Kusudo, Takeshi Omori, Edward R. Smith, Laurent Joly, Samy Merabia, Yasutaka Yamaguchi

    The Journal of Chemical Physics   161 ( 22 )   2024.12( ISSN:0021-9606 ( eISSN:1089-7690

     More details

    Publishing type:Research paper (scientific journal)  

    In this study, we carried out equilibrium molecular dynamics (EMD) simulations of the liquid–liquid (LL) interface between two different Lennard-Jones components with varying miscibility, where we examined the relation between the interfacial tension and the free energy to completely isolate the two liquids using both a mechanical and thermodynamic approach. Using the mechanical approach, we obtained a stress distribution around a quasi-one-dimensional EMD system with a flat LL interface. From the stress distribution, we calculated the LL interfacial tension based on Bakker’s equation, which uses the stress anisotropy around the interface, and measured how it varied with miscibility. The second approach uses thermodynamic integration by enforcing quasi-static isolation of the two liquids to calculate the free energy. This uses the same EMD systems as the mechanical approach, with both extended dry-surface and phantom-wall (PW) schemes applied. When the two components were immiscible, the mechanical interfacial tension and isolation free energy were in good agreement. When the components were miscible, the values were significantly different. From the result of PW for the case of completely mixed liquids, the difference was attributed to the additional free energy required to separate the binary mixture into single components against the osmotic pressure prior to the complete detachment of the two components. This provides a new route to obtain the free energy of mixing.

    DOI: 10.1063/5.0238862

  • Molecular anatomy of the pressure anisotropy in the interface of one and two component fluids: Local thermodynamic description of the interfacial tension Reviewed

    Takeshi Omori, Yasutaka Yamaguchi

    The Journal of Chemical Physics   161 ( 20 )   2024.11( ISSN:0021-9606 ( eISSN:1089-7690

     More details

    Authorship:Lead author, Corresponding author   Publishing type:Research paper (scientific journal)  

    Through the decomposition of the pressure into the kinetic and the intermolecular contributions, we show that the pressure anisotropy in the fluid interface, which is the source of the interfacial tension, comes solely from the latter contribution. The pressure anisotropy due to the intermolecular force between the fluid particles in the same or the different fluid components is approximately proportional to the multiplication of the corresponding fluid density gradients, and from the molecular dynamics simulation of the liquid–vapor and liquid–liquid interfaces, we demonstrate that the density gradient theory by van der Waals gives the leading order approximation of the free energy density in inhomogeneous systems, neglecting the Tolman length.

    DOI: 10.1063/5.0235858

  • Measuring line tension: Thermodynamic integration during detachment of a molecular dynamics droplet Reviewed

    Minori Shintaku, Haruki Oga, Hiroki Kusudo, Edward R. Smith, Takeshi Omori, Yasutaka Yamaguchi

    The Journal of Chemical Physics   160 ( 22 )   2024.06( ISSN:0021-9606 ( eISSN:1089-7690

     More details

    Publishing type:Research paper (scientific journal)  

    The contact line (CL) is where solid, liquid, and vapor phases meet, and Young’s equation describes the macroscopic force balance of the interfacial tensions between these three phases. These interfacial tensions are related to the nanoscale stress inhomogeneity appearing around the interface, and for curved CLs, e.g., a three-dimensional droplet, another force known as the line tension must be included in Young’s equation. The line tension has units of force, acting parallel to the CL, and is required to incorporate the extra stress inhomogeneity around the CL into the force balance. Considering this feature, Bey et al. [J. Chem. Phys. 152, 094707 (2020)] reported a mechanical approach to extract the value of line tension τℓ from molecular dynamics (MD) simulations. In this study, we show a novel thermodynamics interpretation of the line tension as the free energy per CL length, and based on this interpretation, through MD simulations of a quasi-static detachment process of a quasi-two-dimensional droplet from a solid surface, we obtained the value τℓ as a function of the contact angle. The simulation scheme is considered to be an extension of a thermodynamic integration method, previously used to calculate the solid–liquid and solid–vapor interfacial tensions through a detachment process, extended here to the three-phase system. The obtained value agreed well with the result by Bey et al. and showed the validity of thermodynamic integration at the three-phase interface.

    DOI: 10.1063/5.0201973

  • The receding contact line cools down during dynamic wetting Reviewed

    Hiroki Kusudo, Takeshi Omori, Laurent Joly, Yasutaka Yamaguchi

    The Journal of Chemical Physics   159 ( 16 )   2023.10( ISSN:0021-9606 ( eISSN:1089-7690

     More details

    Publishing type:Research paper (scientific journal)  

    When a contact line (CL)—where a liquid–vapor interface meets a substrate—is put into motion, it is well known that the contact angle differs between advancing and receding CLs. Using non-equilibrium molecular dynamics simulations, we reveal another intriguing distinction between advancing and receding CLs: while temperature increases at an advancing CL—as expected from viscous dissipation, we show that temperature can drop at a receding CL. Detailed quantitative analysis based on the macroscopic energy balance around the dynamic CL showed that the internal energy change of the fluid due to the change of the potential field along the pathline out of the solid–liquid interface induced a remarkable temperature drop around the receding CL, in a manner similar to latent heat upon phase changes. This result provides new insights for modeling the dynamic CL, and the framework for heat transport analysis introduced here can be applied to a wide range of nanofluidic systems.

    DOI: 10.1063/5.0171769

  • Equilibrium molecular dynamics evaluation of the solid–liquid friction coefficient: Role of timescales Reviewed

    Haruki Oga, Takeshi Omori, Laurent Joly, Yasutaka Yamaguchi

    The Journal of Chemical Physics   159 ( 2 )   2023.07( ISSN:0021-9606 ( eISSN:1089-7690

     More details

    Publishing type:Research paper (scientific journal)   International / domestic magazine:International journal  

    Solid–liquid friction plays a key role in nanofluidic systems. Following the pioneering work of Bocquet and Barrat, who proposed to extract the friction coefficient (FC) from the plateau of the Green–Kubo (GK) integral of the solid–liquid shear force autocorrelation, the so-called plateau problem has been identified when applying the method to finite-sized molecular dynamics simulations, e.g., with a liquid confined between parallel solid walls. A variety of approaches have been developed to overcome this problem. Here, we propose another method that is easy to implement, makes no assumptions about the time dependence of the friction kernel, does not require the hydrodynamic system width as an input, and is applicable to a wide range of interfaces. In this method, the FC is evaluated by fitting the GK integral for the timescale range where it slowly decays with time. The fitting function was derived based on an analytical solution of the hydrodynamics equations [Oga et al., Phys. Rev. Res. 3, L032019 (2021)], assuming that the timescales related to the friction kernel and the bulk viscous dissipation can be separated. By comparing the results with those of other GK-based methods and non-equilibrium molecular dynamics, we show that the FC is extracted with excellent accuracy by the present method, even in wettability regimes where other GK-based methods suffer from the plateau problem. Finally, the method is also applicable to grooved solid walls, where the GK integral displays complex behavior at short times.

    DOI: 10.1063/5.0155628

  • Higher order lubrication model between slip walls Reviewed

    Shintaro Takeuchi, Takeshi Omori, Takehiro Fujii, Takeo Kajishima

    Microfluidics and Nanofluidics   27 ( 7 )   2023.06( ISSN:1613-4982 ( eISSN:1613-4990

     More details

    Publishing type:Research paper (scientific journal)  

    Abstract

    A higher order lubrication model between slip walls is proposed for predicting the flow fields that cannot be described by the standard lubrication models based on the thin-gap approximation. The analysis shows that when considering the non-negligible pressure gradient in the surface-normal direction, the local pressure can be separated into (i) the base contribution by the modified Reynolds lubrication equation and (ii) the higher order component varying in both longitudinal and wall-normal directions, which takes the form proportional to the longitudinal derivative of the local velocity of the Couette–Poiseuille flow. For both (i) and (ii), the effect of the slip boundaries appears as the apparent displacements of the no-slip solid walls, and for (i) additional terms (to the no-slip case) also appear. The validity of the higher order slip-wall lubrication model is established by comparing the analytical prediction of the pressure with the fully resolved numerical results in a relatively wide region between a no-slip corrugated wall and a flat plate with varying slip length: the contribution of the higher order term is identified as the decreased lubrication pressure due to velocity slip. The model also successfully predicts the trend of pressure change between the varying slip case and a more realistic system with constant slip length for a channel, where the thin-gap approximation does not hold.

    DOI: 10.1007/s10404-023-02644-5

    Other URL: https://link.springer.com/article/10.1007/s10404-023-02644-5/fulltext.html

  • (Invited) Nanoscale Wetting and Its Connection with Macroscopic Young's Equation Invited Reviewed

    Yasutaka Yamaguchi, Hiroki Kusudo, Carlos Bistafa, Donatas Surblys, Takeshi Omori, Gota Kikugawa

    ECS Transactions   108 ( 4 )   93 - 102   2022.05

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1149/10804.0093ecst

  • Coupled Simulation of Flow and Chemical Reaction with Finite Reaction Rate for Decarburization of Molten Iron using Gas Jet of Carbon Dioxide Reviewed

    Tetsuya Yamamoto, Takeshi Omori, Takeo Kajishima

    ISIJ International   62 ( 1 )   38 - 47   2022.01

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.2355/isijinternational.ISIJINT-2021-296

  • Quantifying the solid-fluid interfacial tensions depending on the substrate curvature: Young's equation holds for wetting around nanoscale cylinder Reviewed

    Keitaro Watanabe, Hiroki Kusudo, Carlos Bistafa, Takeshi Omori, Yasutaka Yamaguchi

    AIP Publishing The Journal of Chemical Physics   2022.01( ISSN:0021-9606

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1063/5.0079816

  • Slip length measurement in rectangular graphene nanochannels with a 3D flow analysis Reviewed

    Kuan-Ting Chen, Qin-Yi Li, Takeshi Omori, Yasutaka Yamaguchi, Tatsuya Ikuta, Koji Takahashi

    Elsevier BV Carbon   189 ( 15 )   162 - 172   2021.12( ISSN:0008-6223

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.carbon.2021.12.048

  • Local stress tensor calculation by the method-of-plane in microscopic systems with macroscopic flow: A formulation based on the velocity distribution function Reviewed

    Hiroki Kusudo, Takeshi Omori, Yasutaka Yamaguchi

    AIP Publishing The Journal of Chemical Physics   155 ( 18 )   184103 - 184103   2021.11( ISSN:0021-9606

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1063/5.0062889

  • Theoretical framework for the atomistic modeling of frequency-dependent liquid-solid friction Reviewed

    Haruki Oga, Takeshi Omori, Cecilia Herrero, Samy Merabia, Laurent Joly, Yasutaka Yamaguchi

    American Physical Society (APS) Physical Review Research   3 ( 3 )   2021.07

     More details

  • Wilhelmy equation revisited: A lightweight method to measure liquid–vapor, solid–liquid, and solid–vapor interfacial tensions from a single molecular dynamics simulation Reviewed

    Yuta Imaizumi, Takeshi Omori, Hiroki Kusudo, Carlos Bistafa, Yasutaka Yamaguchi

    AIP Publishing The Journal of Chemical Physics   153 ( 3 )   034701 - 034701   2020.07( ISSN:0021-9606

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1063/5.0011979

  • Erratum: “Extraction of the equilibrium pinning force on a contact line exerted from a wettability boundary of a solid surface through the connection between mechanical and thermodynamic routes” [J. Chem. Phys. 151, 154501 (2019)] Reviewed

    Hiroki Kusudo, Takeshi Omori, Yasutaka Yamaguchi

    The Journal of Chemical Physics   152 ( 18 )   189901 - 189901   2020.05( ISSN:0021-9606 ( eISSN:1089-7690

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1063/5.0010632

  • Erratum: “Interpretation of Young’s equation for a liquid droplet on a flat and smooth solid surface: Mechanical and thermodynamic routes with a simple Lennard-Jones liquid” [J. Chem. Phys. 150, 044701 (2019)] Reviewed

    Yasutaka Yamaguchi, Hiroki Kusudo, Donatas Surblys, Takeshi Omori, Gota Kikugawa

    The Journal of Chemical Physics   152 ( 17 )   179901 - 179901   2020.05( ISSN:0021-9606 ( eISSN:1089-7690

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1063/5.0010630

▼display all

Books and Other Publications

  • 化学工学系流体シミュレーションの最前線 : 基礎・実践・将来展望

    化学工学会関東支部, 化学工学会粒子・流体プロセス部会( Role: Contributor ,  ナノスケールシミュレーション)

    化学工学会関東支部,三恵社 (発売)  2024.01  ( ISBN:9784866938943

     More details

    Total pages:vi, 221p  

    CiNii Books

MISC

  • Phenomenological Model for the Flow in Fine Conduits: Fluid Mechanics of the Flow with Mesoscopic Regions Invited

    Takeshi Omori

    Chemical Engineering of Japan   87 ( 3 )   114 - 116   2023.03

     More details

    Authorship:Lead author, Last author, Corresponding author   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

Presentations

  • 拡散界面法における界面応力モデル

    大森 健史

    数値流体力学シンポジウム  2024.12 

     More details

    Presentation type:Oral presentation (general)  

  • 界面における圧力の非等方性と界面張力

    大森 健史

    日本流体力学会年会  2024.09 

     More details

    Presentation type:Oral presentation (general)  

  • Measuring dynamic contact angles by computational fluid dynamics and molecular dynamics

    Takeshi Omori

    3rd UK Fluid Network Special Interest Group on Non-Equilibrium Molecular Dynamics (NEMD) meeting  2024.06 

     More details

    Presentation type:Oral presentation (general)  

  • 気泡核生成に与える非凝縮性ガス影響の分子動力学解析

    藤山 敬太, 大森 健史

    日本伝熱シンポジウム  2024.05 

     More details

    Presentation type:Oral presentation (general)  

  • Thermal Difference in Advancing and Receding Contact Lines: Insight from MD Simulation

    Hiroki Kusudo, Takeshi Omori, Laurent Joly, Yasutaka Yamaguchi

    AJK-FED 2023  2023.07 

     More details

    Presentation type:Oral presentation (general)  

  • 線形応答理論に基づく平衡分子動力学系を用いた固体・液体間の滑り現象の再現とその応用

    大賀 春輝, 大森 健史, 山口 康隆

    日本伝熱シンポジウム  2023.05 

     More details

    Presentation type:Oral presentation (general)  

  • 固液境界における流体力学的境界条件の周波数依存性

    山本 紘生, 大森 健史

    日本伝熱シンポジウム  2023.05 

     More details

    Presentation type:Poster presentation  

  • Hydrodynamic boundary condition on the solid surface with geometrical inhomogeneity

    2022.12 

     More details

    Presentation type:Oral presentation (general)  

  • Measurement method of solid-liquid friction coefficient using friction force auto-correlation function and its application to atomically non-flat solid surfaces

    2022.12 

     More details

    Presentation type:Oral presentation (general)  

  • 線形応答理論から導かれる平衡ゆらぎと非定常応答との関係に関する分子動力学解析

    大賀 春輝, 大森 健史, 山口 康隆

    日本流体力学会年会  2022.09 

     More details

    Presentation type:Oral presentation (general)  

  • MD による固体と流体の界面張力の様々な算出法

    新宅 実慶, 楠戸 宏城, 大森 健史, 藤野 大成, Carlos BISTAFA, 山口 康隆

    日本伝熱シンポジウム  2022.05 

     More details

    Presentation type:Oral presentation (general)  

  • 動的濡れの非平衡分子動力学解析:熱流体場の抽出に基づく,前進・後退接触線近傍の局所的温度上昇・低下の解析

    楠戸 宏城, 大森 健史, 山口 康隆

    日本伝熱シンポジウム  2022.05 

     More details

    Presentation type:Oral presentation (general)  

  • Measurement and modulation of the liquid slip length in graphene nanochannels

    Kuan-Ting Chen, 大森 健史, 生田 竜也, 李 秦宜, 山口 康隆, 高橋 厚史

    日本伝熱シンポジウム  2022.05 

     More details

    Presentation type:Poster presentation  

  • 平衡分子動力学系を用いた壁面すべりを有するPoiseuille流れの流量抽出方法の提案

    大賀 春輝, 千崎 亮平, 大森 健史, 山口 康隆

    日本伝熱シンポジウム  2022.05 

     More details

    Presentation type:Oral presentation (general)  

  • 滑り速度を有する境界に対する埋め込み境界射影法:境界力の分配演算子が満たすべき条件 Domestic conference

    藤井 健博, 大森 健史, 梶島 岳夫

    数値流体力学シンポジウム  2021.12 

     More details

    Venue:オンライン  

  • マクロの流れを伴うミクロの系における局所的応力テンソルの計算: 速度分布関数に基づくMethod-of-Planeの定式化 Domestic conference

    楠戸 宏城, 大森 健史, 山口 康隆

    日本流体力学会年会  2021.09 

  • 固液摩擦力の揺らぎを用いた固液摩擦の周波数特性の抽出 Domestic conference

    大賀 春輝, 大森 健史, Herrero Cecilia, Merabia Samy, Joly Laurent, 山口 康隆

    日本流体力学会年会  2021.09 

  • 微小スケールの物理に立脚した動的濡れの数値計算 Invited Domestic conference

    大森 健史

    化学工学会 粒子・流体プロセス部会 熱物質流体工学分科会  2021.09 

  • A Three-Dimensional Model for Capillary Flow in Rectangular Nanochannels Domestic conference

    Kuan-Ting Chen, Qin-Yi Li, Takeshi Omori, Yasutaka Yamaguchi, Tatsuya Ikuta, Koji Takahashi

    A Three-Dimensional Model for Capillary Flow in Rectangular Nanochannels  2021.05 

  • Lennard-Jones 流体の動的接触線近傍の流れ場と粘性応力の抽出 Domestic conference

    楠戸 宏城, 大森 健史, 山口 康隆

    日本伝熱シンポジウム  2021.05 

  • 縞状の濡れ性の分布を持つ固体面と単純液体の間の摩擦に関する非平衡分子動力学解析 Domestic conference

    千﨑 亮平, 大賀 春輝, 大森 健史, 山口 康隆

    日本伝熱シンポジウム  2021.05 

  • 定常な動的接触線近傍の応力分布に関する分子動力学解析 Domestic conference

    楠戸 宏城, 大森 健史, 山口 康隆

    数値流体力学シンポジウム  2020.12 

  • 平衡MDとLFHによる固液間剪断力の自己相関係数算出 Domestic conference

    大賀 春輝, 大森 健史, 山口 康隆

    数値流体力学シンポジウム  2020.12 

  • Lennard-Jones液体面に浸されたナノスケールの固体円筒に働く毛管力の曲率依存性 Domestic conference

    渡部 桂太朗, 楠戸 宏城, 大森 健史, 山口 康隆

    数値流体力学シンポジウム  2020.12 

  • 静電相互作用を考慮した気液二相流の数値解析 Domestic conference

    三輪 敦俊, 大森 健史, 梶島 岳夫

    数値流体力学シンポジウム  2020.12 

  • Wilhelmyの関係式の再考: 単一のシミュレーションによる固気液の3つの界面張力の算出 Domestic conference

    今泉 優太, 大森 健史, 楠戸 宏城, Bistafa Carlos, 山口 康隆

    数値流体力学シンポジウム  2020.12 

  • Cahn-Hilliard方程式を用いた二相流解析におけるOpenMPI/OpenACC Hybrid Computing Domestic conference

    大島 洋喜, 大森, 健史, 梶島 岳夫

    数値流体力学シンポジウム  2020.12 

  • すべり境界条件に対する埋め込み境界射影法の開発 Domestic conference

    藤井 健博, 大森 健史, 梶島 岳夫

    日本機械学会 流体工学部門講演会  2020.11 

  • MoP による定常な動的接触線近傍の応力分布に関する考察 Domestic conference

    楠戸 宏城, 大森 健史, 山口 康隆

    日本流体力学会年会  2020.09 

  • 固液界面における摩擦力の揺らぎと流体力学の関係: Langevin 方程式を介した接続 Domestic conference

    大賀 春輝, 大森 健史, 山口 康隆

    日本流体力学会年会  2020.09 

  • OH 終端されたシリカ表面上の濡れに関する理論解析 Domestic conference

    ビスタファ カルロス, スルブリス ドナタス, 大森 健史, 山口 康隆

    日本流体力学会年会  2020.09 

  • 固体壁面に接する3次元Lennard-Jones液滴の接触線近傍における力学的バランス Domestic conference

    新宅 実慶, 楠戸 宏城, 大森 健史, 山口 康隆

    日本流体力学会年会  2020.09 

  • 接触線近傍での流体界面の易動度 Domestic conference

    赤井 優斗, 大島 洋喜, 大森 健史, 山口 康隆, 梶島 岳夫

    日本流体力学会年会  2020.09 

▼display all

Grant-in-Aid for Scientific Research

  • Mesoscopic physics of the slip between solid and liquid

    Grant-in-Aid for Scientific Research(B)  2027

  • Mesoscopic physics of the slip between solid and liquid

    Grant-in-Aid for Scientific Research(B)  2026

  • Mesoscopic physics of the slip between solid and liquid

    Grant-in-Aid for Scientific Research(B)  2025

  • Conservation Laws of Microscopic Wetting: from Equilibrium to Nonequilibrium

    Grant-in-Aid for Scientific Research(B)  2025

  • Mesoscopic physics of the slip between solid and liquid

    Grant-in-Aid for Scientific Research(B)  2024

  • Conservation Laws of Microscopic Wetting: from Equilibrium to Nonequilibrium

    Grant-in-Aid for Scientific Research(B)  2024

  • 固液滑りのメソスケール物理

    Grant-in-Aid for Scientific Research(B)  2023.04

  • ミクロの濡れの保存則:平衡系から非平衡系へ

    Grant-in-Aid for Scientific Research(B)  2022.04

▼display all

Charge of on-campus class subject

  • 機械マテリアル演習

    2024   Weekly class   Undergraduate

  • 機械システム演習

    2024   Weekly class   Undergraduate

  • エネルギー機械演習

    2024   Weekly class   Undergraduate

  • 機械流体力学3

    2024   Weekly class   Undergraduate

  • 機械基礎実験

    2024   Weekly class   Undergraduate

  • 機械設計演習

    2024   Weekly class   Undergraduate

  • 機械流体力学1

    2024   Weekly class   Undergraduate

  • 機械工学概論

    2024   Weekly class   Undergraduate

  • 数値流体力学特論

    2024   Weekly class   Graduate school

  • 機械系特別研究第1

    2024   Intensive lecture   Graduate school

  • 機械系特別演習第1

    2024   Intensive lecture   Graduate school

  • 初年次ゼミナール

    2024   Weekly class   Graduate school

  • 機械系特別演習

    2024   Intensive lecture   Graduate school

  • 設計製作実習

    2024   Intensive lecture   Undergraduate

  • 設計製作実習

    2024   Intensive lecture   Undergraduate

  • 機械数学演習

    2024   Weekly class   Undergraduate

  • 機械製作実習

    2024   Weekly class   Undergraduate

  • 機械製図演習

    2024   Weekly class   Undergraduate

  • 機械製図演習

    2024   Weekly class   Undergraduate

  • 機械工作実習

    2024   Weekly class   Undergraduate

  • 機械工作実習

    2024   Weekly class   Undergraduate

  • 機械工学基礎

    2024   Weekly class   Undergraduate

  • 機械系特別研究第2

    2024   Intensive lecture   Graduate school

  • 機械系特別演習第2

    2024   Intensive lecture   Graduate school

  • 機械系特別研究

    2024   Intensive lecture   Graduate school

  • 卒業研究

    2024   Intensive lecture   Undergraduate

  • 設計製作実習

    2024   Intensive lecture   Undergraduate

  • 設計製作実習

    2024   Intensive lecture   Undergraduate

  • 数値流体力学特論

    2023   Weekly class   Graduate school

  • 機械系特別研究第1

    2023   Intensive lecture   Graduate school

  • 機械流体力学1

    2023   Weekly class   Undergraduate

  • 初年次ゼミナール

    2023   Weekly class   Graduate school

  • 機械系特別演習

    2023   Intensive lecture   Graduate school

  • 機械系特別研究

    2023   Intensive lecture   Graduate school

  • 卒業研究

    2023   Intensive lecture   Undergraduate

  • 設計製作実習

    2023   Weekly class   Undergraduate

  • 計測評価工学

    2023   Weekly class   Undergraduate

  • 機械系特別研究第2

    2023   Intensive lecture   Graduate school

  • 機械製図演習

    2023   Weekly class   Undergraduate

  • 機械工作実習

    2023   Weekly class   Undergraduate

  • 数値計算法

    2023   Weekly class   Undergraduate

  • 機械工学実験

    2023   Weekly class   Undergraduate

  • 機械系特別演習

    2022   Intensive lecture   Graduate school

  • 数値流体力学特論

    2022   Weekly class   Graduate school

  • 機械系特別演習第1

    2022   Intensive lecture   Graduate school

  • 機械系特別演習第1

    2022   Intensive lecture   Graduate school

  • 機械系特別演習第2 (杉本)

    2022   Intensive lecture   Graduate school

  • 特別演習(流体力学)

    2022   Weekly class   Graduate school

  • 計測評価工学

    2022   Weekly class   Undergraduate

  • エンジニアリングデザイン

    2022   Intensive lecture   Undergraduate

  • 機械系特別研究 (杉本)

    2022   Intensive lecture   Graduate school

  • 前期特別研究(機械物理系)

    2022   Intensive lecture   Graduate school

  • 卒業研究(機械工学科)

    2022   Intensive lecture   Undergraduate

  • 設計製作実習(B)

    2022   Weekly class   Undergraduate

  • 設計製作実習(A)

    2022   Weekly class   Undergraduate

  • 数値計算法

    2022   Weekly class   Undergraduate

  • 機械工学実験(B)

    2022   Weekly class   Undergraduate

  • 機械工学実験(A)

    2022   Weekly class   Undergraduate

▼display all