Updated on 2024/03/29

写真a

 
Kada Masaru
 
Organization
Graduate School of Science Department of Mathematics Associate Professor
School of Science Department of Mathematics
Title
Associate Professor
Affiliation
Institute of Science
Affiliation campus
Nakamozu Campus

Position

  • Graduate School of Science Department of Mathematics 

    Associate Professor  2022.04 - Now

  • School of Science Department of Mathematics 

    Associate Professor  2022.04 - Now

Degree

  • Ph.D. in Science ( Others ) (   Osaka Prefecture University )

  • 修士(理学) ( University of Tsukuba )

Research Areas

  • Natural Science / Applied mathematics and statistics  / Axiomatic Set Theory

  • Natural Science / Basic mathematics  / Axiomatic Set Theory

Research Interests

  • 国際情報交換

  • 可測基数

  • 反映原理

  • 公理的集合論

  • 位相空間論

  • ルベーク測度

  • リンデレーフ空間

  • コンパクト化

  • Ρ(ω)

  • weak Freese-Nation property

  • Stone-Cechコンパクト化

  • Solovay model

  • random実数

  • Open Coloring Axiom

  • null sets

  • meager sets

  • iterated forcing

  • Hechlerの定理

  • Galois-Tukey connection

  • forcing axioms

  • Cohen models

  • Cohen model

  • Cichonの図式

  • 基数不変量

  • 連続関数

  • 距離化可能空間

  • 記述集合論

  • 無限ゲーム

  • 測度代数

  • 数学基礎論

  • 強制法

  • 強制公理

  • 巨大基数公理

  • 実数値可測基数

  • 完備ブール代数

  • club principle

  • Chang's conjecture

Research subject summary

  • 集合論的位相空間論

  • 実数の集合論

Research Career

  • Set-Theoretic Topology

    compactification, metrizable space, Lindelof space, forcing, infinitary combinatorics 

  • set theory of the reals

    cardinal invariant, forcing, infinitary combinatorics  Individual

Professional Memberships

  • Mathematical Society of Japan

    2003.04 - Now   Domestic

Committee Memberships (off-campus)

  • 阪神支部評議員   日本数学会  

    2023.03 - 2024.02 

  • 数学基礎論および歴史分科会評議員   日本数学会  

    2020.03 - 2022.02 

Job Career (off-campus)

  • Osaka Metropolitan University

    2022.04 - Now

  • Osaka Prefecture University   Graduate School of Science

    2012.04 - 2022.03

Papers

  • Strategic equivalence among hat puzzles of various protocols with many colors Reviewed

    Masaru Kada, Souji Shizuma

    Mathematical Logic Quarterly   66 ( 3 )   295 - 299   2020.09( ISSN:0942-5616 ( eISSN:1521-3870

     More details

    Authorship:Corresponding author   Publishing type:Research paper (scientific journal)   Kind of work:Single Work   International / domestic magazine:International journal  

    DOI: 10.1002/malq.201900069

    Other URL: https://onlinelibrary.wiley.com/doi/full-xml/10.1002/malq.201900069

  • Devil's infinite chessboard puzzle under a weaker choice principle (Set Theory and Infinity)

    RIMS Kokyuroku   2164   92 - 96   2020.07( ISSN:18802818

     More details

    Authorship:Corresponding author   Publishing type:Research paper (bulletin of university, research institution)   Kind of work:Joint Work   International / domestic magazine:Domestic journal  

  • Variants of AC under ZF minus union

    M. Kada and T. Kato

    RIMS Kokyuroku   1988   31 - 42   2016.04

     More details

    Kind of work:Joint Work  

  • Some remarks on infinite hat guessing games

    M. Kada and S. Shizuma

    RIMS Kokyuroku   1988   43 - 54   2016.04

     More details

    Kind of work:Joint Work  

  • Preservation of convergence of a sequence to a set Reviewed

    A. Iwasa, M. Kada and S. Kamo

    Topology Proceedings 雑誌   44   97 - 105   2014.04

     More details

    Kind of work:Joint Work  

  • Galois-Tukey connection involving sets of metrics Reviewed

    M. Kada and Y. Yoshinobu

    Tsukuba Journal of Mathematics 雑誌   36 ( 1 )   53 - 66   2012.04

     More details

    Kind of work:Joint Work  

  • Preserving the Lindelof property under forcing extensions Reviewed

    M. Kada

    Topology Proceedings 雑誌 Auburn Univeristy   38   237 - 251   2011.01

     More details

    Kind of work:Single Work  

  • How many miles to beta-X? II --- Approximations to beta-X versus cofinal types of sets of metrics Reviewed

    M. Kada

    Topology and its Applications 雑誌 Elsevier   157   1460 - 1464   2010.01

     More details

    Kind of work:Single Work  

  • How many miles to beta-omega? II --- Ultrafilters and Higson compactifications Reviewed

    M. Kada

    Topology Proceedings 雑誌 Auburn Univeristy   33   123 - 129   2009.01

     More details

    Kind of work:Single Work  

  • The efficiency of quantum identity testing of multiple states Reviewed

    M. Kada, H. Nishimura and T. Yamakami

    Journal of Physics A: Mathematical and Theoretical 雑誌 Institute of Physics   41   2008.09

     More details

    Kind of work:Joint Work  

  • Covering a bounded set of functions by an increasing chain of slaloms Reviewed

    M. Kada

    Topology and its Applications 雑誌 Elsevier   154 ( 1 )   277 - 281   2007.01

     More details

    Kind of work:Single Work  

  • How many miles to beta-X? --- d miles, or just one foot Reviewed

    M. Kada, K. Tomoyasu and Y. Yoshinobu

    Topology and its Applications 雑誌 Elsevier   153 ( 17 )   3313 - 3319   2006.11

     More details

    Kind of work:Joint Work  

▼display all

Books and Other Publications

MISC

  • コンパクト空間とコンパクト化 : 距離空間の点列コンパクト性を中心に—特集 集合・位相の考え方

    嘉田 勝

    数理科学   60 ( 6 )   32 - 38   2022.06( ISSN:0386-2240

  • 集合算の証明って何をすればいいの? 図を描くだけじゃダメなの? International journal

    嘉田勝

    数学セミナー増刊 大学数学の質問箱   2019.06

     More details

    Authorship:Corresponding author   Publishing type:Article, review, commentary, editorial, etc. (trade magazine, newspaper, online media)   Kind of work:Single Work   International / domestic magazine:Domestic journal  

  • 不可能性の証明/古代ギリシャから現代まで International journal

    嘉田 勝

    数学セミナー   ( 672 )   2017.10

     More details

  • 周期のない周期関数!? International journal

    嘉田 勝

    日本評論社 数学セミナー   53 ( 9 )   17 - 19   2014.09

     More details

  • 数学を語る文法としての論理,数学を語る語彙としての集合 International journal

    嘉田 勝

    日本評論社 数学セミナー   53 ( 4 )   34 - 38   2014.04

     More details

Outline of collaborative research (seeds)

  • 数理論理学と論理の教育

     More details

    数理論理学の知見に基づく,高校および大学の数学教育における数学の論理の教育方法の確立

Outline of education staff

  • 共通教育科目(数学)
    理学部数学科専門科目
    理学部数学科における卒業研究指導
    大学院理学研究科数学専攻における大学院生指導

Charge of on-campus class subject

  • 数学特別研究2A

    2024   Intensive lecture   Graduate school

  • 数学特別研究1A

    2024   Intensive lecture   Graduate school

  • 数理論理学特論

    2024   Weekly class   Graduate school

  • 数学特別研究5A

    2024   Intensive lecture   Graduate school

  • 数学特別研究4A

    2024   Intensive lecture   Graduate school

  • 数学特別研究3A

    2024   Intensive lecture   Graduate school

  • 線形代数1

    2024   Weekly class   Graduate school

  • 数学1

    2024   Weekly class   Graduate school

  • Calculus I

    2021    

  • Linear Algebra II

    2021    

  • Mathematical Logic

    2021    

  • Advanced Lecture : mathematical logic

    2021    

  • Mathematics I

    2021    

▼display all

Charge of off-campus class subject

  • 微分積分入門1/2

    2020
    -
    2021
    Institution:Kobe University

     More details

    Level:Undergraduate (liberal arts) 

  • 論理学

    2014.10
    -
    2015.03
    Institution:Momoyama Gakuin University

     More details

    Level:Undergraduate (specialized) 

  • 微分方程式

    2005.04
    -
    2005.09
    Institution:Chubu University

     More details

    Level:Undergraduate (liberal arts) 

  • 微分積分学I

    2005.04
    -
    2005.09
    Institution:Chubu University

     More details

    Level:Undergraduate (liberal arts) 

Faculty development activities

  • 数学共通科目FD会議参加  2023

Number of papers published by graduate students

  • 2020

    Number of graduate students presentations:1

Number of instructed thesis, researches

  • 2023

    Number of instructed the graduation thesis:Number of graduation thesis reviews:0

    [Number of instructed the Master's Program] (previous term):[Number of instructed the Master's Program] (letter term):0

    [Number of master's thesis reviews] (chief):[Number of master's thesis reviews] (vice-chief):2

    [Number of doctoral thesis reviews] (chief):[Number of doctoral thesis reviews] (vice-chief):0

Visiting Lectures ⇒ Link to the list of Visiting Lectures

  • 真偽を決定できない数学的主張 数学の証明能力の限界の研究

    Category:Literature (literature, philosophy, history, art, human behavior, language, culture, society / gender), Science (mathematics, physics, chemistry, biology, geology, biochemistry)

     More details

    Audience:Junior high school students, High school students, College students, Teachers, Researchers, General, Company, Civic organization

    Keyword:数学基礎論, 集合論, 連続体仮説 

    みなさんは,数学の問題はすべて○か×かが決まっていると思っていませんか? 実は,数学の世界には,○か×か,すなわち成り立つか成り立たないかを決められない問題がたくさんあるのです。「決められない」とは,「まだわかっていない」のではなく「数学の証明能力の限界を超えた問題であることが判明している」という意味です! この講義では,「実数はどのぐらい『たくさん』存在するか」という問題を中心に,数学の証明能力の限界に関する数学的研究(公理的集合論)の一端を紹介します。

Foreigner acceptance

  • 2019

    foreigners accepted :1

    International Students :0