Updated on 2024/01/30

写真a

 
Matsumoto Takuya
 
Organization
Graduate School of Engineering Division of Science and Engineering for Materials, Chemistry and Biology Assistant Professor
School of Engineering Department of Chemical Engineering
Title
Assistant Professor
Affiliation
Institute of Engineering
Affiliation campus
Nakamozu Campus

Position

  • Graduate School of Engineering Division of Science and Engineering for Materials, Chemistry and Biology 

    Assistant Professor  2022.04 - Now

  • School of Engineering Department of Chemical Engineering 

    Assistant Professor  2022.04 - Now

Degree

  • 博士(工学) ( Kobe University )

Research Areas

  • Manufacturing Technology (Mechanical Engineering, Electrical and Electronic Engineering, Chemical Engineering) / Chemical reaction and process system engineering

  • Manufacturing Technology (Mechanical Engineering, Electrical and Electronic Engineering, Chemical Engineering) / Biofunction and bioprocess engineering

  • Life Science / Applied microbiology

Research Interests

  • 反応工学

  • 微生物

  • 酵素

  • 生物化学工学

  • 合成生物学

  • 酵素工学

Research subject summary

  • 酵素を用いた物質変換技術に関する研究

  • 遺伝子組換え微生物を用いた有用物質生産に関する研究

  • 微生物を用いたプラスチックリサイクル

Research Career

  • 微生物を用いたプラスチックリサイクル

    PETase  Individual

    2020.04 - Now 

  • 大腸菌を用いた有用物質生産技術の開発

    Individual

    2018.04 - Now 

  • 酵母を用いた有用物質生産技術の開発

    Individual

    2018.04 - Now 

  • 酵素を用いた物質変換技術の開発

    Individual

    2018.04 - Now 

Professional Memberships

  • 極限環境生物学会

    2019.10 - Now   Domestic

  • 日本蛋白質科学会

    2019.02 - Now   Domestic

  • 酵素工学研究会

    2013.10 - Now   Domestic

  • 日本生物工学会

    2010.03 - Now   Domestic

  • 化学工学会

    2009.10 - Now   Domestic

Awards

  • 第7回新化学技術研究奨励賞

    2018.07   新化学技術推進協会  

     More details

    Country:Japan

  • 21th Young Asian Biochemical Engineers Community ポスター賞

    2015.10   Asian Federation of Biotechnology  

  • 17th Young Asian Biochemical Engineers Community ポスター賞

    2011.10   Asian Federation of Biotechnology  

Job Career (off-campus)

  • 大阪公立大学   大学院工学研究科 物質化学生命系専攻 化学工学分野

    2022.04 - Now

  • Osaka Prefecture University

    2018.04 - 2022.03

Papers

  • UV mutagenesis improves growth potential of green algae in a green algae–yeast co-culture system

    Yukino Karitani, Ryosuke Yamada, Takuya Matsumoto, Hiroyasu Ogino

    Archives of Microbiology   206 ( 2 )   61   2024.01( ISSN:0302-8933

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1007/s00203-023-03796-2

    PubMed

    Other URL: https://link.springer.com/article/10.1007/s00203-023-03796-2/fulltext.html

  • Display of PETase on the Cell Surface of Escherichia coli Using the Anchor Protein PgsA

    Takuma Yamashita, Takuya Matsumoto, Ryosuke Yamada, Hiroyasu Ogino

    Applied Biochemistry and Biotechnology   2024.01( ISSN:02732289

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1007/s12010-023-04837-8

    PubMed

  • Transition of stability of putidaredoxin reductase by introducing proline

    Taiki Okamura, Rina Aritomi, Takuya Matsumoto, Ryosuke Yamada, Hidehiko Hirakawa, Hiroyasu Ogino

    Biochemical Engineering Journal   201   109139 - 109139   2024.01( ISSN:1369703X

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.bej.2023.109139

  • Enhancing 3-hydroxypropionic acid production in Saccharomyces cerevisiae through enzyme localization within mitochondria

    Takuya Matsumoto, Takashi Otani, Ryosuke Yamada, Hiroyasu Ogino

    Biochemical and Biophysical Research Communications   680   1 - 6   2023.11( ISSN:0006-291X

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.bbrc.2023.09.010

    PubMed

  • Engineering acyl-ACP reductase with fusion tags enhances alka(e)ne synthesis in Escherichia coli.

    Jiahu Han, Koki Asano, Takuya Matsumoto, Ryosuke Yamada, Hiroyasu Ogino

    Enzyme and microbial technology   168   110262 - 110262   2023.05( ISSN:01410229

     More details

    Publishing type:Research paper (scientific journal)   International / domestic magazine:International journal  

    Alka(e)nes are high-value chemicals with a potentially broad range of industrial applications because of their following advantages: (1) chemical and structural resemblance to petroleum hydrocarbons and (2) higher energy density and hydrophobicity than those of other biofuels. The low yield of bio-alka(e)nes, however, hinders their commercial application. The activity and solubility of acyl carrier protein (ACP) reductase (AAR) affect alka(e)ne biosynthesis in cyanobacteria. The enhancement of the activity and concentration of soluble AAR through genetic and process engineering can improve bio-alka(e)ne yield. Although fusion tags are used to enhance the expression or solubility of recombinant proteins, their effectiveness in improving the production of bio-alka(e)nes has not yet been reported. Fusion tags can be used to improve the amount or activity of soluble AAR in Escherichia coli and to increase the yield of alka(e)nes in E. coli cells co-expressing aldehyde deformylating oxygenase (ADO). Hence, in the present study, histidine (His6/His12), thioredoxin (Trx), maltose-binding protein (MBP), and N-utilization substance (NusA) were used as AAR fusion tags. The strain expressing SeAAR with His12 tag and NpADO showed a 7.2-fold higher yield of alka(e)nes than the strain expressing AAR without fusion tag and NpADO. The highest titer of alka(e)nes (194.78 mg/L) was achieved with the His12 tag.

    DOI: 10.1016/j.enzmictec.2023.110262

    PubMed

  • Construction of a machine-learning model to predict the optimal gene expression level for efficient production of d-lactic acid in yeast

    Yoshiki Yamamoto, Ryosuke Yamada, Takuya Matsumoto, Hiroyasu Ogino

    World Journal of Microbiology and Biotechnology   39 ( 3 )   69   2023.03( ISSN:09593993

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1007/s11274-022-03515-x

    PubMed

    Other URL: https://link.springer.com/article/10.1007/s11274-022-03515-x/fulltext.html

  • Identification of genes responsible for absorbing palladium ion in Escherichia coli.

    Matsumoto T, Tanaka Y, Kamino M, Yamada R, Konishi Y, Ogino H

    Bioscience, biotechnology, and biochemistry   2023.02( ISSN:0916-8451

     More details

  • Mevalonate production by electro-fermentation in Escherichia coli via Mtr-based electron transfer system

    Takuya Matsumoto, Kazuki Higuma, Ryosuke Yamada, Hiroyasu Ogino

    Biochemical Engineering Journal   191   108772 - 108772   2023.02( ISSN:1369703X

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.bej.2022.108772

  • Building a machine‐learning model to predict optimal mevalonate pathway gene expression levels for efficient production of a carotenoid in yeast

    Shun Shimazaki, Ryosuke Yamada, Yoshiki Yamamoto, Takuya Matsumoto, Hiroyasu Ogino

    Biotechnology Journal   19 ( 1 )   e2300285   2023( ISSN:18606768

     More details

    Publishing type:Research paper (scientific journal)  

    Abstract

    Simultaneous modification of the expression levels of many metabolic enzyme genes results in diverse expression ratios of these genes; however, the relationship between gene expression levels and chemical productivity remains unclear. However, clarification of this relationship is expected to improve the productivity of useful chemicals. Supervised machine learning is considered to be an effective means to clarify this relationship. In this study, to improve the productivity of carotenoids in yeast Saccharomyces cerevisiae, we aimed to build a machine‐learning model that can predict the optimal gene expression level for carotenoid production. First, we obtained data on the expression levels of mevalonate pathway enzyme genes and carotenoid production. Then, based on these data, we built a machine‐learning model to predict carotenoid productivity based on gene expression levels. The prediction accuracy of 0.6292 (coefficient of determination) was achieved using the test data. The maximum predicted carotenoid productivity was 4.3 times higher in the engineered strain than in the parental strain, suggesting that the expression levels of the mevalonate pathway enzyme genes tHMG1 and ERG8 have a particularly large impact on carotenoid productivity. This study could be one of the important achievements in addressing the uncertainty of genotype‐phenotype correlations, which is one of the challenges facing metabolic engineering strategies.

    DOI: 10.1002/biot.202300285

    PubMed

    Other URL: https://onlinelibrary.wiley.com/doi/pdf/10.1002/biot.202300285

  • Promoting cell growth and characterizing partial symbiotic relationships in the co‐cultivation of green alga Chlamydomonas reinhardtii and Escherichia coli Reviewed

    Ryosuke Yamada , Moe Yokota , Takuya Matsumoto , Ben Hankamer , Hiroyasu Ogino

    Biotechnology Journal   18 ( 2 )   2200099   2022.12

  • Promoting cell growth and characterizing partial symbiotic relationships in the co‐cultivation of green alga <i>Chlamydomonas reinhardtii</i> and <i>Escherichia coli</i>

    Ryosuke Yamada, Moe Yokota, Takuya Matsumoto, Ben Hankamer, Hiroyasu Ogino

    Biotechnology Journal   18 ( 2 )   2200099 - 2200099   2022.12( ISSN:1860-6768

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1002/biot.202200099

    Other URL: https://onlinelibrary.wiley.com/doi/full-xml/10.1002/biot.202200099

  • Mitochondrial expression of metabolic enzymes for improving carotenoid production in Saccharomyces cerevisiae

    Takuya Matsumoto, Tomoki Osawa, Hikaru Taniguchi, Akira Saito, Ryosuke Yamada, Hiroyasu Ogino

    Biochemical Engineering Journal   189   108720 - 108720   2022.12( ISSN:1369-703X

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.bej.2022.108720

  • Protein engineering to improve the stability of Thermomyces lanuginosus lipase in methanol

    Taiki Okamura, Yohei Nogami, Takuya Matsumoto, Ryosuke Yamada, Hiroyasu Ogino

    Biochemical Engineering Journal   187   108659 - 108659   2022.11( ISSN:1369-703X

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.bej.2022.108659

  • Bioengineering for the industrial production of 2,3-butanediol by the yeast, Saccharomyces cerevisiae.

    Ryosuke Mitsui, Ryosuke Yamada, Takuya Matsumoto, Hiroyasu Ogino

    World journal of microbiology & biotechnology   38 ( 3 )   38 - 38   2022.01

     More details

    Publishing type:Research paper (scientific journal)   International / domestic magazine:International journal  

    Owing to issues, such as the depletion of petroleum resources and price instability, the development of biorefinery related technologies that produce fuels, electric power, chemical substances, among others, from renewable resources is being actively promoted. 2,3-Butanediol (2,3-BDO) is a key compound that can be used to produce various chemical substances. In recent years, 2,3-BDO production using biological processes has attracted extensive attention for achieving a sustainable society through the production of useful compounds from renewable resources. With the development of genetic engineering, metabolic engineering, synthetic biology, and other research field, studies on 2,3-BDO production by the yeast, Saccharomyces cerevisiae, which is safe and can be fabricated using an established industrial-scale cultivation technology, have been actively conducted. In this review, we sought to describe 2,3-BDO and its derivatives; discuss 2,3-BDO production by microorganisms, in particular S. cerevisiae, whose research and development has made remarkable progress; describe a method for separating and recovering 2,3-BDO from a microbial culture medium; and propose future prospects for the industrial production of 2,3-BDO by microorganisms.

    DOI: 10.1007/s11274-021-03224-x

    PubMed

  • Improving carotenoid production in recombinant yeast, Saccharomyces cerevisiae, using ultrasound-irradiated two-phase extractive fermentation Reviewed

    R. Yamada, Y. Ando, R. Mitsui, A. Mizobata, S. Yoshihara, H. Tokumoto, T. Matsumoto, H. Ogino

    Engineering in Life Sciences 雑誌   2022.01

     More details

    Kind of work:Joint Work  

  • Improving carotenoid production in recombinant yeast, Saccharomyces cerevisiae, using ultrasound-irradiated two-phase extractive fermentation.

    Ryosuke Yamada, Yorichika Ando, Ryosuke Mitsui, Asuka Mizobata, Shizue Yoshihara, Hayato Tokumoto, Takuya Matsumoto, Hiroyasu Ogino

    Engineering in life sciences   22 ( 1 )   4 - 12   2022.01

     More details

    Publishing type:Research paper (scientific journal)   International / domestic magazine:International journal  

    Carotenoids are hydrophobic compounds that exhibit excellent bioactivity and can be produced by recombinant S. cerevisiae. Irradiating microorganisms with ultrasonic waves increase the productivity of various useful chemicals. Ultrasonic waves are also used to extract useful chemicals that accumulate in microbial cells. In this study, we aimed to improve the carotenoid production efficiency of a recombinant S. cerevisiae using an ultrasonic-irradiation based two-phase extractive fermentation process. When isopropyl myristate was used as the extraction solvent, a total of 264 mg/L of carotenoid was produced when batches were subjected to ultrasonic-irradiation at 10 W, which was a 1.3-fold increase when compared to the control. Transcriptome analysis suggested that one of the reasons for this improvement was an increase in the number of living cells. In fact, after 96 h of fermentation, the number of living cells increased by 1.4-fold upon irradiation with ultrasonic waves. Consequently, we succeeded in improving the carotenoid production in a recombinant S. cerevisiae strain using a ultrasonic-irradiated two-phase extractive fermentation and isopropyl myristate as the solvent. This fermentation strategy has the potential to be widely applied during the production of hydrophobic chemicals in recombinant yeast, and future research is expected to further develop this process.

    DOI: 10.1002/elsc.202100051

    PubMed

  • The synthesis of L-glycyl-L-tyrosine derivatives using organic-solvent stable PST-01 protease from Pseudomonas aeruginosa PST-01 Reviewed

    T. Matsumoto, R. Kitayama, R. Yamada, H. Ogino

    Process Biochemistry   2021.03

  • Improvement of 2,3-butanediol tolerance in Saccharomyces cerevisiae by using a novel mutagenesis strategy Reviewed

    A. Mizobata, R. Mitsui, R. Yamada, T. Matsumoto, S. Yoshihara, H. Tokumoto, H. Ogino

    Journal of Bioscience and Bioengineering 雑誌   2021.03

  • Improvement of 2,3-butanediol tolerance in Saccharomyces cerevisiae by using a novel mutagenesis strategy.

    Asuka Mizobata, Ryosuke Mitsui, Ryosuke Yamada, Takuya Matsumoto, Shizue Yoshihara, Hayato Tokumoto, Hiroyasu Ogino

    Journal of bioscience and bioengineering   131 ( 3 )   283 - 289   2021.03

     More details

    Publishing type:Research paper (scientific journal)   International / domestic magazine:Domestic journal  

    Although the yeast Saccharomyces cerevisiae has been used to produce various bio-based chemicals, including solvents and organic acids, most of these products inhibit yeast growth at high concentrations. In general, it is difficult to rationally improve stress tolerance in yeast by modifying specific genes, because many of the genes involved in stress response remain unidentified. Previous studies have reported that various forms of stress tolerance in yeast were improved by introducing random mutations, such as DNA point mutations and DNA structural mutations. In this study, we developed a novel mutagenesis strategy that allows for the simultaneous performance of these two types of mutagenesis to construct a yeast variant with high 2,3-butanediol (2,3-BDO) tolerance. The mutations were simultaneously introduced into S. cerevisiae YPH499, accompanied by a stepwise increase in the concentration of 2,3-BDO. The resulting mutant YPH499/pol3δ/BD_392 showed 4.9-fold higher cell concentrations than the parental strain after 96 h cultivation in medium containing 175 g/L 2,3-BDO. Afterwards, we carried out transcriptome analysis to characterize the 2,3-BDO-tolerant strain. Gene ontology enrichment analysis with RNA sequence data revealed an increase in expression levels of genes related to amino acid metabolic processes. Therefore, we hypothesize that the yeast acquired high 2,3-BDO tolerance by amino acid function. Our research provides a novel mutagenesis strategy that achieves efficient modification of the genome for improving tolerance to various types of stressors.

    DOI: 10.1016/j.jbiosc.2020.11.004

    PubMed

  • The synthesis of l-glycyl-l-tyrosine derivatives using organic-solvent stable PST-01 protease from Pseudomonas aeruginosa PST-01

    Takuya Matsumoto, Ruri Kitayama, Ryosuke Yamada, Hiroyasu Ogino

    Process Biochemistry   102   186 - 189   2021.03( ISSN:1359-5113

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.procbio.2021.01.005

  • Improvement of lactic acid tolerance by cocktail δ-integration strategy and identification of the transcription factor PDR3 responsible for lactic acid tolerance in yeast Saccharomyces cerevisiae.

    Ryosuke Yamada, Yuki Kumata, Ryosuke Mitsui, Takuya Matsumoto, Hiroyasu Ogino

    World journal of microbiology & biotechnology   37 ( 2 )   19 - 19   2021.01( ISSN:0959-3993

     More details

    Publishing type:Research paper (scientific journal)   International / domestic magazine:International journal  

    Although, yeast Saccharomyces cerevisiae is expected to be used as a host for lactic acid production, improvement of yeast lactic acid tolerance is required for efficient non-neutralizing fermentation. In this study, we optimized the expression levels of various transcription factors to improve the lactic acid tolerance of yeast by a previously developed cocktail δ-integration strategy. By optimizing the expression levels of various transcription factors, the maximum D-lactic acid production and yield under non-neutralizing conditions were improved by 1.2. and 1.6 times, respectively. Furthermore, overexpression of PDR3, which is known as a transcription factor involved in multi-drug resistance, effectively improved lactic acid tolerance in yeast. In addition, we clarified for the first time that high expression of PDR3 contributes to the improvement of lactic acid tolerance. PDR3 is considered to be an excellent target gene for studies on yeast stress tolerance and further researches are desired in the future.

    DOI: 10.1007/s11274-020-02977-1

    PubMed

  • Improvement of lactic acid tolerance by cocktail δ-integration strategy and identification of the transcription factor PDR3 responsible for lactic acid tolerance in yeast Saccharomyces cerevisiae

    R. Yamada, Y. Kumata, R. Mitsui, T. Matsumoto, H. Ogino

    Journal of Microbiology and Biotechnology 雑誌   2021.01

     More details

    Kind of work:Joint Work  

  • Identification of genes responsible for reducing palladium ion in Escherichia coli Reviewed

    T Matsumoto, M Kamino, R Yamada, Y Konishi, H Ogino

    Journal of Biotechnology 著書   2020.12

     More details

    Kind of work:Joint Work  

  • Construction of lactic acid-tolerant Saccharomyces cerevisiae by using CRISPR-Cas-mediated genome evolution for efficient D-lactic acid production Reviewed

    R Mitsui, R Yamada, T Matsumoto, S Yoshihara, H Tokumoto, H Ogino

    Applied Microbiology and Biotechnology 雑誌   2020.11

     More details

    Kind of work:Joint Work  

  • Construction of lactic acid-tolerant Saccharomyces cerevisiae by using CRISPR-Cas-mediated genome evolution for efficient D-lactic acid production.

    Ryosuke Mitsui, Ryosuke Yamada, Takuya Matsumoto, Shizue Yoshihara, Hayato Tokumoto, Hiroyasu Ogino

    Applied microbiology and biotechnology   104 ( 21 )   9147 - 9158   2020.11

     More details

    Publishing type:Research paper (scientific journal)   International / domestic magazine:International journal  

    Lactic acid (LA) is chemically synthesized or fermentatively produced using glucose as substrate, mainly using lactic acid bacteria. Polylactic acid is used as a biodegradable bioplastic for packaging materials, medical materials, and filaments for 3D printers. In this study, we aimed to construct a LA-tolerant yeast to reduce the neutralization cost in LA production. The pHLA2-51 strain was obtained through a previously developed genome evolution strategy, and transcriptome analysis revealed the gene expression profile of the mutant yeast. Furthermore, the expression of the genes associated with glycolysis and the LA synthesis pathway in the LA-tolerant yeast was comprehensively and randomly modified to construct a D-LA-producing, LA-tolerant yeast. In detail, DNA fragments expressing thirteen genes, HXT7, HXK2, PGI1, PFK1, PFK2, FBA1, TPI1, TDH3, PGK1, GPM1, ENO2, and PYK2, and D-lactate dehydrogenase (D-LDH) from Leuconostoc mesenteroides were randomly integrated into the genomic DNA in the LA-tolerant yeast. The resultant engineered yeast produced about 33.9 g/L of D-LA from 100 g/L glucose without neutralizing agents in a non-neutralized condition and 52.2 g/L of D-LA from 100 g/L glucose with 20 g/L CaCO3 in a semi-neutralized condition. Our research provides valuable insights into non-neutralized fermentative production of LA. KEY POINTS: • Lactic acid (LA) tolerance of yeast was improved by genome evolution. • The transcription levels of 751 genes were changed under LA stress. • Rapid LA production with semi-neutralization was achieved by modifying glycolysis. • A versatile yeast strain construction method based on the CRISPR system was proposed.

    DOI: 10.1007/s00253-020-10906-3

    PubMed

  • Metabolic engineering of E. coli for improving mevalonate production to promote NADPH regeneration and enhance acetyl-CoA supply. Reviewed

    Daichi Satowa, Ryosuke Fujiwara, Shogo Uchio, Mariko Nakano, Chisako Otomo, Yuuki Hirata, Takuya Matsumoto, Shuhei Noda, Tsutomu Tanaka, Akihiko Kondo

    Biotechnology and bioengineering   117 ( 7 )   2153 - 2164   2020.07( ISSN:0006-3592

     More details

    Publishing type:Research paper (scientific journal)   International / domestic magazine:International journal  

    Microbial production of mevalonate from renewable feedstock is a promising and sustainable approach for the production of value-added chemicals. We describe the metabolic engineering of Escherichia coli to enhance mevalonate production from glucose and cellobiose. First, the mevalonate-producing pathway was introduced into E. coli and the expression of the gene atoB, which encodes the gene for acetoacetyl-CoA synthetase, was increased. Then, the deletion of the pgi gene, which encodes phosphoglucose isomerase, increased the NADPH/NADP+ ratio in the cells but did not improve mevalonate production. Alternatively, to reduce flux toward the tricarboxylic acid cycle, gltA, which encodes citrate synthetase, was disrupted. The resultant strain, MGΔgltA-MV, increased levels of intracellular acetyl-CoA up to sevenfold higher than the wild-type strain. This strain produced 8.0 g/L of mevalonate from 20 g/L of glucose. We also engineered the sugar supply by displaying β-glucosidase (BGL) on the cell surface. When cellobiose was used as carbon source, the strain lacking gnd displaying BGL efficiently consumed cellobiose and produced mevalonate at 5.7 g/L. The yield of mevalonate was 0.25 g/g glucose (1 g of cellobiose corresponds to 1.1 g of glucose). These results demonstrate the feasibility of producing mevalonate from cellobiose or cellooligosaccharides using an engineered E. coli strain.

    DOI: 10.1002/bit.27350

    PubMed

    Other URL: https://onlinelibrary.wiley.com/doi/full-xml/10.1002/bit.27350

  • Construction of yeast producing patchoulol by global metabolic engineering strategy Reviewed

    R Mitsui, R Nishikawa, R Yamada, T Matsumoto, H Ogino

    Biotechnology and Bioengineerin 雑誌   2020.05

     More details

    Kind of work:Joint Work  

  • Construction of yeast producing patchoulol by global metabolic engineering strategy. Reviewed

    Ryosuke Mitsui, Riru Nishikawa, Ryosuke Yamada, Takuya Matsumoto, Hiroyasu Ogino

    Biotechnology and bioengineering   117 ( 5 )   1348 - 1356   2020.05

     More details

    Publishing type:Research paper (scientific journal)   International / domestic magazine:International journal  

    Patchoulol is a sesquiterpene alcohol found in the leaves of the patchouli plant that can be extracted by steam distillation. Notably, patchoulol is an essential natural product frequently used in the chemical industry. However, patchouli produces an insignificant amount of patchoulol, not to mention steam distillation, and requires a lot of energy and time. Recombinant microorganisms that can be cultured in mild conditions and can produce patchoulol from renewable biomass resources may be a promising alternative. We previously developed the global metabolic engineering strategy (GMES), which produces a comprehensive metabolic modification in yeast, using the cocktail δ-integration method. In this study, we aimed to produce patchoulol by modifying engineered yeast. The expression of nine genes involved in patchoulol synthesis was modulated using GMES. Regarding patchoulol production, the resultant strain, YPH499/PAT167/MVA442, showed a concentration of 42.1 mg/L, a production rate of 8.42 mg/L/d, and a yield of 2.05 mg/g-glucose, respectably. These concentration values, production rate, and yield obtained through batch-fermentation in this study were high level when compared to previously reported recombinant microorganism studies. GMES could be used as a potential strategy for producing secondary metabolites from plants in recombinant Saccharomyces cerevisiae.

    DOI: 10.1002/bit.27284

    PubMed

  • Metabolic engineering of E. coli for improving mevalonate production to promote NADPH regeneration and enhance acetyl‐CoA supply Reviewed

    Daichi Satowa, Ryosuke Fujiwara, Shogo Uchio, Mariko Nakano, Chisako Otomo, Yuuki Hirata, Takuya Matsumoto, Shuhei Noda, Tsutomu Tanaka, Akihiko Kondo

    Biotechnology and Bioengineering 雑誌   2020.04

     More details

    Kind of work:Joint Work  

  • N-linked glycosylation of thermostable lipase from Bacillus thermocatenulatus to improve organic solvent stability Reviewed

    S Kajiwara, R Yamada, T Matsumoto, H Ogino

    Enzyme and microbial technology 雑誌   2020.01

     More details

    Kind of work:Joint Work  

  • n-Butylamine production from glucose using a transaminase-mediated synthetic pathway in Escherichia coli. Reviewed

    Takuya Matsumoto, Yuki Mori, Tsutomu Tanaka, Akihiko Kondo

    Journal of bioscience and bioengineering   129 ( 1 )   99 - 103   2020.01

     More details

    Publishing type:Research paper (scientific journal)   International / domestic magazine:Domestic journal  

    Bioamination methods using microorganisms have attracted much attention because of the increasing demand for environmentally friendly bioprocesses. n-Butylamine production from glucose in Escherichia coli was demonstrated in this study, which has never been reported because of the absence of n-butylamine-producing pathway in nature. We focused on a transaminase-mediated cascade for bioamination from an alcohol or aldehyde. The cascade can convert an alcohol or an aldehyde to the corresponding amine with l-alanine as an amine donor. Here, n-butyraldehyde, which is a metabolic intermediate in the n-butanol producing pathway, is a potential intermediate for producing n-butylamine using this cascade. Hence, the n-butanol-producing pathway and the transaminase-mediated cascade were combined into a synthetic metabolic pathway for producing n-butylamine from glucose. Firstly, we demonstrated the conversion of n-butanol to n-butylamine using a three enzyme-mediated cascade. n-Butanol was successfully converted to n-butylamine in 92% yield in the presence of l-alanine and ammonium chloride. Then, the n-butanol-producing pathway and transaminase-mediated cascade were introduced into E. coli. Using this system, n-butylamine was successfully produced from glucose as a carbon source at a concentration of 53.2 mg L-1 after 96 h cultivation using a ppc (phosphoenolpyruvate carboxylase)-deficient strain. To the best of our knowledge, this is the first report of the direct production of n-butylamine from glucose, and may provide a starting point for the development of microbial methods to produce other bioamines.

    DOI: 10.1016/j.jbiosc.2019.06.015

    PubMed

  • N-linked glycosylation of thermostable lipase from Bacillus thermocatenulatus to improve organic solvent stability. Reviewed

    Shota Kajiwara, Ryosuke Yamada, Takuya Matsumoto, Hiroyasu Ogino

    Enzyme and microbial technology   132   109416 - 109416   2020.01

     More details

    Publishing type:Research paper (scientific journal)   International / domestic magazine:International journal  

    A thermostable lipase from Bacillus thermocatenulatus was glycosylated by forming the consensus sequence (-NXS/T-) for N-linked glycosylation by site-directed mutagenesis. Among the eight BTL2 mutants including the consensus sequence, six BTL2 mutants, A277 N, A290 N, Y200 N, T236 N, T238 N, and P261 N, were glycosylated. Among the six mutants, glycosylated A277 N and T236 N showed higher stability in the presence of 25% (v/v) DMSO (74.3 and 72.8% of initial activity was remained after incubation at 45 °C for 20 h, respectively) than deglycosylated A277 N and T236 N (57.2 and 45.1% of initial activity was remained, respectively). These glycosylated mutants also showed higher remaining activity than wild-type BTL2 (56.0% of the initial activity were remained). Furthermore, the glycosylated mutant T236 N showed longer half-lives in the presence of 25% (v/v) ethylene glycol, DMSO, and DMF (161, 133, and 56.7 h at 45 °C, respectively) than deglycosylated mutant T236 N (107, 91.9, and 42.8 h, respectively). N-linked glycosylation may be a promising approach for preparing enzymes to retain their activity in the presence of organic solvents.

    DOI: 10.1016/j.enzmictec.2019.109416

    PubMed

  • Chemical treatments for modification and immobilization to improve the solvent-stability of lipase. Reviewed

    Takuya Matsumoto, Ryosuke Yamada, Hiroyasu Ogino

    World journal of microbiology & biotechnology   35 ( 12 )   193 - 193   2019.11

     More details

    Publishing type:Research paper (scientific journal)   International / domestic magazine:International journal  

    Lipase is a lipolytic enzyme that catalyzes the hydrolysis of lipids and esterification reactions. Lipase has been utilized in industrial uses, food processing, and therapeutic applications as a biocatalyst. However, substrates of lipase are often insoluble in water, and this problem limits its utility. Lipases are also used in organic solvents where the solvent-stability of lipase is an important factor. There is a huge number of approaches that can be undertaken to improve the organic solvent-stability of lipases. For example, screening of solvent-tolerant lipase in nature and direct evolution of lipase using genetic engineering are some of the employed approaches. Here, we focus on approaches based on the chemical treatment of lipases for modification and immobilization. The solvent-stability of lipase was improved by the attachment of other molecules, such as surfactants, polymers, and carbohydrates. The immobilization of the enzyme is been known to be an effective approach for not only recycling the enzyme but also its stabilization. Several reports have demonstrated that the solvent-stability of lipase is also improved by immobilization. In this review, we provide an overview of the approaches used to improve the solvent-stability of lipase.

    DOI: 10.1007/s11274-019-2777-8

    PubMed

  • n-Butylamine production from glucose using a transaminase-mediated synthetic pathway in Escherichia coli. Reviewed

    T. Matsumoto, Y. Mori, T. Tanaka*, A. Kondo

    Journal of Bioscience and Bioengineering 雑誌   2019.06

     More details

    Kind of work:Joint Work  

  • Modification of lipase from Candida cylindracea with dextran using the borane-pyridine complex to improve organic solvent stability. Reviewed

    Shota Kajiwara, Kyohei Komatsu, Ryosuke Yamada, Takuya Matsumoto, Masahiro Yasuda, Hiroyasu Ogino

    Journal of biotechnology   296   1 - 6   2019.04

     More details

    Publishing type:Research paper (scientific journal)   International / domestic magazine:International journal  

    In this study, a commercial lipase derived from Candida cylindracea was chemically modified with dextran by conjugating ε-amine in the lysine residue with the carbonyl residue in oxidized dextran using the borane-pyridine complex as a reducing agent to increase the hydrophilicity of the microenvironment around the lipase in the presence of organic solvents. The degree of modification (53.2%), amount of dextran (0.66 g/g-lipase), specific activity (similar to that of the unmodified lipase), and stability in the presence of ethanol and 2-propanol (the half-lives were 2.24 and 1.86 times longer than those of the unmodified lipase) were higher for the lipase modified at pH 8.0 than for the lipases modified at other pH levels. Following modification with dextran at pH 8.0, the stability of the modified lipase was higher than that of the unmodified lipase in the presence of 25% (v/v) DMSO, ethanol, 2-propanol, toluene, n-hexane, and isooctane (the half-lives were 1.45, 2.24, 1.86, 1.76, 2.67 and 2.95 times longer than those of the unmodified lipase). Therefore, chemical modification with polysaccharides such as dextran using the borane-pyridine complex as a reducing agent could be a promising approach for improving the organic solvent stability of enzymes.

    DOI: 10.1016/j.jbiotec.2019.02.009

    PubMed

  • Modification of lipase from Candida cylindracea with dextran using the borane-pyridine complex to improve organic solvent stability Reviewed

    Shota Kajiwara, Kyohei Komatsu, Ryosuke Yamada, Takuya Matsumoto, Masahiro Yasuda, Hiroyasu Ogino

    Journal of biotechnology 雑誌   2019.04

     More details

    Kind of work:Joint Work  

  • Improvement of the organic solvent stability of a commercial lipase by chemical modification with dextran Reviewed

    Shota Kajiwara, Kyohei Komatsu, Ryosuke Yamada, Takuya Matsumoto, Masahiro Yasuda, Hiroyasu Ogino

    Biochemical engineering journal 雑誌   2019.02

     More details

    Kind of work:Joint Work  

  • Improvement of the organic solvent stability of a commercial lipase by chemical modification with dextran

    Kajiwara, S., Komatsu, K., Yamada, R., Matsumoto, T., Yasuda, M., Ogino, H.

    Biochemical Engineering Journal   142   2019

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.bej.2018.11.003

  • Enhancing 3-hydroxypropionic acid production in combination with sugar supply engineering by cell surface-display and metabolic engineering of Schizosaccharomyces pombe Reviewed

    Seiya Takayama, Aiko Ozaki, Rie Konishi, Chisako Otomo, Mayumi Kishida, Yuuki Hirata, Takuya Matsumoto, Tsutomu Tanaka, Akihiko Kondo

    Microbial cell factories 雑誌   2018.12

     More details

    Kind of work:Joint Work  

  • Streptavidin-hydrogel prepared by sortase A-assisted click chemistry for enzyme immobilization on an electrode Reviewed

    T Matsumoto, Y Isogawa, T Tanaka, A Kondo

    Biosensors and Bioelectronics 雑誌   99   56 - 61   2018.01

  • Metabolic engineering of Schizosaccharomyces pombe via CRISPR-Cas9 genome editing for lactic acid production from glucose and cellobiose Reviewed

    A Ozaki, R Konishi, C Otomo, M Kishida, S Takayama, T Matsumoto, T Tanaka, A Kondo

    Metabolic engineering communications 雑誌   5   60 - 67   2017.12

  • 1, 5-Diaminopentane production from xylooligosaccharides using metabolically engineered Corynebacterium glutamicum displaying beta-xylosidase on the cell surface Reviewed

    K Imao, R Konishi, M Kishida, Y Hirata, S Segawa, N Adachi, R Matsuura, Y Tsuge, T Matsumoto, T Tanaka, A Kondo

    Bioresource technology 雑誌   245   1684 - 1691   2017.12

  • Sortase A-Mediated Metabolic Enzyme Ligation in Escherichia coli Reviewed

    T Matsumoto, K Furuta, T Tanaka, A Kondo

    ACS synthetic biology 雑誌   5 ( 11 )   1284 - 1289   2016.10

  • Improvement of ectoine productivity by using sugar transporter-overexpressing Halomonas elongata Reviewed

    K Tanimura, T Matsumoto, H Nakayama, T Tanaka, A Kondo

    Enzyme and microbial technology 雑誌   89   63 - 68   2016.07

  • 2, 3-Butanediol production from cellobiose using exogenous beta-glucosidase-expressing Bacillus subtilis Reviewed

    K Tanimura, S Takashima, T Matsumoto, T Tanaka, A Kondo

    Applied microbiology and biotechnology 雑誌   100 ( 13 )   5781 - 5789   2016.07

  • Twigged streptavidin polymer as a scaffold for protein assembly Reviewed

    T Matsumoto, Y Isogawa, K Minamihata, T Tanaka, A Kondo

    Journal of biotechnology 雑誌   225   61 - 66   2016.05

  • Secretory production of tetrameric native full-length streptavidin with thermostability using Streptomyces lividans as a host Reviewed

    S Noda, T Matsumoto, T Tanaka, A Kondo

    Microbial cell factories 雑誌   14 ( 1 )   2015.12

  • C‐Terminal‐oriented Immobilization of Enzymes Using Sortase A‐mediated Technique Reviewed

    Y Hata, T Matsumoto, T Tanaka, A Kondo

    Macromolecular bioscience 雑誌   15 ( 10 )   1375 - 1380   2015.10

  • Multi-functional glycoside hydrolase: Blon_0625 from Bifidobacterium longum subsp. infantis ATCC 15697 Reviewed

    T Matsumoto, S Shimada, Y Hata, T Tanaka, A Kondo

    Enzyme and microbial technology 雑誌   68   10 - 14   2015.01

  • Two‐Stage Oxidation of Glucose by an Enzymatic Bioanode Reviewed

    T Matsumoto, S Shimada, K Yamamoto, T Tanaka, A Kondo

    Fuel Cells 雑誌   13 ( 6 )   960 - 964   2013.12

  • Starchy biomass-powered enzymatic biofuel cell based on amylases and glucose oxidase multi-immobilized bioanode Reviewed

    K Yamamoto, T Matsumoto, S Shimada, T Tanaka, A Kondo

    New biotechnology 雑誌   30 ( 5 )   531 - 535   2013.06

  • Site‐specific protein labeling with amine‐containing molecules using Lactobacillus plantarum sortase Reviewed

    T Matsumoto, R Takase, T Tanaka, H Fukuda, A Kondo

    Biotechnology journal 雑誌   7 ( 5 )   642 - 648   2012.05

  • Sortase A-catalyzed site-specific coimmobilization on microparticles via streptavidin Reviewed

    T Matsumoto, T Tanaka, A Kondo

    Langmuir 雑誌   28 ( 7 )   3553 - 3557   2012.02

  • Site-specific tetrameric streptavidin-protein conjugation using sortase A Reviewed

    T Matsumoto, S Sawamoto, T Sakamoto, T Tanaka, H Fukuda, A Kondo

    Journal of biotechnology 雑誌   152 ( 1-2 )   37 - 42   2011.03

▼display all

Books and Other Publications

  • Sortase A-Assisted Metabolic Enzyme Ligation in Escherichia coli for Enhancing Metabolic Flux.

    Takuya MATSUMOTO, Tsutomu TANAKA, Akihiko KONDO( Role: Joint author)

    Synthetic Biology, Methods in Molecular Biology, Humana Press, New York  2018.05 

     More details

    Responsible for pages:1772. 125-136  

  • Sortase Aを用いたタンパク質配向固定化技術の開発

    松本 拓也、田中 勉( Role: Joint author)

    シーエムシー出版   2018.04 

     More details

    Responsible for pages:第3章  

MISC

  • ポリエチレンテレフタレート(PET)は生分解性?

    松本拓也

    日本生物工学会 バイオミディア   98 ( 2 )   2020.02

     More details

  • Chemical treatments for modification and immobilization to improve the solvent-stability of lipase Reviewed

    T Matsumoto, R Yamada, H Ogino

    World Journal of Microbiology and Biotechnology   2019.12

     More details

  • Engineering metabolic pathways in Escherichia coli for constructing a “microbial chassis” for biochemical production Reviewed

    T Matsumoto, T Tanaka, A Kondo

    Bioresource technology   245   1362 - 1368   2017.12

  • Enzyme‐mediated methodologies for protein modification and bioconjugate synthesis Reviewed

    T Matsumoto, T Tanaka, A Kondo

    Biotechnology journal   7 ( 9 )   1137 - 1146   2012.09

Presentations

  • D-乳酸生産メチロトローフ酵母と緑藻との共培養によるD-乳酸生産性向上

    井上義文, 仮谷柚希乃, 山田亮祐, 松本拓也, 荻野博康

    日本微生物生態学会第36回浜松大会  2023.11 

  • 酵母を用いた酵素の細胞内小器官局在化による3-ヒドロキシプロピオン酸生産性の改善

    齋藤明, 松本拓也, 山田亮祐, 荻野博康

    酵素工学研究会第90回講演会  2023.11 

  • 変異導入による緑藻・酵母共培養系における緑藻増殖能の向上

    仮谷柚希乃, 山田亮祐, 松本拓也, 荻野博康

    日本微生物生態学会第36回浜松大会  2023.11 

  • PETaseを細胞表層に提示した大腸菌の開発

    山下拓真, 松本拓也, 山田亮祐, 荻野博康

    酵素工学研究会第90回講演会  2023.11 

  • Engineering acyl-ACP reductase with fusion tags enhances alka(e)ne synthesis in Escherichia coli

    2023.09 

  • 酵母との共培養による緑藻の増殖能向上

    仮谷柚希乃, 山田亮祐, 松本拓也, 荻野博康

    化学工学会第54回秋季大会  2023.09 

  • 分子動力学計算を利用したクチナーゼへの有機溶媒耐性付与

    岡村大毅, 松本拓也, 山田亮祐, 荻野博康

    化学工学会第54回秋季大会  2023.09 

  • カロテノイド高生産酵母の作製を目指した機械学習モデルの構築

    島崎舜, 山田亮祐, 山本祥輝, 松本拓也, 荻野博康

    化学工学会第54回秋季大会  2023.09 

  • Electro-fermentation in Escherichia coli via Mtr-based electron transfer system

    T. Matsumoto, R. Sekiya, R. Yamada, H. Ogino

    2023.07 

     More details

    Presentation type:Poster presentation  

  • Improvement of methanol stability of cutinase from Saccharomonospora viridis

    T. Okamura, T. Matsumoto, R. Yamada, H. Ogino

    The 28th Symposium of Young Asian Biological Engineers’ Community  2023.07 

     More details

    Presentation type:Poster presentation  

  • アシルキャリヤータンパク質の高発現によるアルカンの生成に優れた大腸菌の開発

    松原 武輝, 韓 佳虎, 浅野 紘輝, 松本 拓也, 山田 亮祐, 荻野 博康

    第25回化学工学会学生発表会  2023.03 

  • PETaseを細胞表層に提示した大腸菌の開発

    山下 拓真, 松本 拓也, 山田 亮祐, 荻野 博康

    化学工学会第88年会  2023.03 

  • 複数遺伝子の同時発現抑制による酵母のβ-カロテン生産性向上

    山本 千尋, 三ツ井 良輔, 山田 亮祐, 坂口 瑠美, 松本 拓也, 荻野 博康

    化学工学会第88年会  2023.03 

  • 基質特異性の異なるThermomyces lanuginosus lipaseライブラリの作製

    森岡 りな, 野上 洋平, 松本 拓也, 山田 亮祐, 荻野 博康

    化学工学会第88年会  2023.03 

  • アシルキャリヤータンパク質の高発現によるアルカンの生成に優れた大腸菌の開発

    松原 武輝, 韓 佳虎, 浅野 紘輝, 松本 拓也, 山田 亮祐, 荻野 博康

    第25回化学工学会学生発表会  2023.03 

  • 複数遺伝子の同時発現抑制による酵母のβ-カロテン生産性向上

    山本 千尋, 三ツ井 良輔, 山田 亮祐, 坂口 瑠美, 松本 拓也, 荻野 博康

    化学工学会第88年会  2023.03 

  • 基質特異性の異なるThermomyces lanuginosus lipaseライブラリの作製

    森岡 りな, 野上 洋平, 松本 拓也, 山田 亮祐, 荻野 博康

    化学工学会第88年会  2023.03 

  • PETaseを細胞表層に提示した大腸菌の開発

    山下 拓真, 松本 拓也, 山田 亮祐, 荻野 博康

    化学工学会第88年会  2023.03 

  • 酵母による高効率D-乳酸生産を目指した機械学習モデルの構築

    山本 祥輝, 山田 亮祐, 松本 拓也, 荻野 博康

    第74回日本生物工学会大会  2022.10 

  • 酵母による高効率D-乳酸生産を目指した機械学習モデルの構築

    山本 祥輝, 山田 亮祐, 松本 拓也, 荻野 博康

    第74回日本生物工学会大会  2022.10 

  • Thermomyces lanuginosus由来のリパーゼへのメタノール耐性付与

    岡村 大毅, 野上 洋平, 松本 拓也, 山田 亮祐, 荻野 博康

    第24回化学工学会学生発表会  2022.03 

  • Thermomyces lanuginosus由来のリパーゼへのメタノール耐性付与

    岡村 大毅, 野上 洋平, 松本 拓也, 山田 亮祐, 荻野 博康

    第24回化学工学会学生発表会  2022.03 

  • 有機溶媒耐性PST-01プロテアーゼを用いたアラニルアラニンの合成 Domestic conference

    水野ひなた,松本拓也,山田亮祐,冨田健一,星野美奈子,荻野博康

    化学工学会関西大会2021  2021.12 

     More details

    Presentation type:Poster presentation  

  • 白金イオンの還元および吸着に関する大腸菌の遺伝子の探索 Domestic conference

    鬼頭和也,松本拓也,山田亮祐,荻野博康

    化学工学会関西大会2021  2021.12 

     More details

    Presentation type:Poster presentation  

  • 酵母を用いた酵素のミトコンドリア局在化による3-ヒドロキシプロピオン酸の生産 Domestic conference

    大谷孝,松本拓也,山田亮祐,荻野博康

    化学工学会関西大会2021  2021.12 

     More details

    Presentation type:Poster presentation  

  • 大腸菌の代謝改変によるバイオアルカンの生産性向上 Domestic conference

    浅野紘輝,松本拓也,山田亮祐,荻野博康

    化学工学会関西大会2021  2021.12 

     More details

    Presentation type:Poster presentation  

  • 点変異・構造変異同時導入によるカロテノイド高生産酵母の創製 Domestic conference

    安藤和哉,山田亮祐,松本拓也,荻野博康

    化学工学会関西大会2021  2021.12 

     More details

    Presentation type:Poster presentation  

  • 枯草菌との共培養による緑藻の増殖能の向上 Domestic conference

    大山遥行,山田亮祐,松本拓也,荻野 博康

    化学工学会関西大会2021  2021.12 

     More details

    Presentation type:Poster presentation  

  • 酵母を用いた酵素のミトコンドリア局在化による3-ヒドロキシプロピオン酸の生産

    大谷孝, 松本拓也, 山田亮祐, 荻野博康

    化学工学会関西大会2021  2021.12 

     More details

    Presentation type:Poster presentation  

  • 大腸菌の代謝改変によるバイオアルカンの生産性向上

    浅野紘輝, 松本拓也, 山田亮祐, 荻野博康

    化学工学会関西大会2021  2021.12 

     More details

    Presentation type:Poster presentation  

  • Transcriptome analysis of thermotolerant yeast mutant International conference

    R. Mitsui, R. Yamada*, T. Matsumoto, S. Yoshihara, H. Tokumoto, H. Ogino

    The 26th Symposium of Young Asian Biological Engineers’ Community  2021.11 

     More details

    Presentation type:Oral presentation (invited, special)  

  • 点変異・構造変異同時導入による酵母の過酸化水素耐性およびカロテノイド生産性向上 Domestic conference

    安藤和哉,山田亮祐,松本拓也,荻野博康

    極限環境生物学会2021年度(第22回)年会  2021.11 

     More details

    Presentation type:Poster presentation  

  • Transcriptome analysis of thermotolerant yeast mutant

    The 26th Symposium of Young Asian Biological Engineers’ Community  2021.11 

  • 緑藻と枯草菌との共培養による増殖特性の変化 Domestic conference

    大山遥行,山田亮祐,松本拓也,荻野博康

    第73回日本生物工学会大会  2021.10 

     More details

    Presentation type:Poster presentation  

  • バイオアルカンの生産性改善を指向した大腸菌の代謝改変 Domestic conference

    浅野紘輝,松本拓也,山田亮祐,荻野博康

    化学工学会第52回秋季大会  2021.09 

     More details

    Presentation type:Poster presentation  

  • バイオアルカンの生産性改善を指向した大腸菌の代謝改変

    浅野紘輝, 松本拓也, 山田亮祐, 荻野博康

    化学工学会第52回秋季大会  2021.09 

     More details

    Presentation type:Poster presentation  

  • 大腸菌によるレアメタルイオンの還元および吸着に関する遺伝子の探索 Domestic conference

    鬼頭和也,松本拓也,山田亮祐,荻野博康

    化学工学会第86年会  2021.03 

     More details

    Presentation type:Poster presentation  

  • 酵母を用いた酵素のミトコンドリア局在化による有用物質生産 Domestic conference

    大谷孝,松本拓也,山田亮祐,荻野博康

    化学工学会第86年会  2021.03 

     More details

    Presentation type:Poster presentation  

  • 大腸菌によるレアメタルイオンの還元および吸着に関する遺伝子の探索

    鬼頭和也, 松本拓也, 山田亮祐, 荻野博康

    化学工学会第86年会  2021.03 

  • 酵母を用いた酵素のミトコンドリア局在化による有用物質生産

    大谷孝, 松本拓也, 山田亮祐, 荻野博康

    化学工学会第86年会  2021.03 

     More details

    Presentation type:Poster presentation  

  • ゲノム進化法によって創製した熱耐性酵母の遺伝子発現量解析

    三ツ井良輔, 山田亮祐, 松本拓也, 吉原静恵, 徳本勇人, 荻野博康

    極限環境生物学会2020年度 (第21回)年会  2020.10 

  • 酵母を用いた酵素のミトコンドリア局在化によるβ-カロテン高効率生産

    大澤知己, 松本拓也, 山田亮祐, 荻野博康

    化学工学会第85年会  2020.03 

  • セルロース系バイオマスからのメバロン酸の生産を指向した大腸菌の創生

    濱田直樹, 松本拓也, 山田亮祐, 荻野博康

    化学工学会第85年会  2020.03 

  • Thermomyces lanuginosus由来リパーゼへの有機溶媒耐性付与

    松本拓也, 野上洋平, 山田亮祐, 荻野博康

    極限環境生物学会 第20回年会  2019.11 

     More details

    Presentation type:Poster presentation  

  • Thermomyces lanuginosus由来リパーゼへの有機溶媒耐性付与

    松本拓也, 野上洋平, 山田亮祐, 荻野博康

    酵素工学研究会第82回講演会  2019.11 

     More details

    Presentation type:Poster presentation  

  • 微生物を触媒とした酸化還元反応の利用

    松本拓也

    第7回TT-netワークショップ 研究発表(大阪府立大学)  2019.10 

  • Construction and analysis of engineered D-lactic acid tolerant Saccharomyces cerevisiae

    三ツ井良輔, 山田亮祐, 松本拓也, 荻野博康

    18th Asian Pacific Confederation of Chemical Engineering Congress  2019.09 

  • Production of bioalkanes using engineered Escherichia coli

    濱志緒里, 松本拓也, 山田亮祐, 荻野博康

    18th Asian Pacific Confederation of Chemical Engineering Congress  2019.09 

  • Modulation of the mevalonate pathway in yeast for efficient patchoulol production by global metabolic engineering

    山田亮祐, 西川利留, 三ツ井良輔, 松本拓也, 荻野博康

    18th Asian Pacific Confederation of Chemical Engineering Congress  2019.09 

  • Improvement of 2,3-butandiol tolerance in yeast by a novel mutagenesis strategy

    溝端明日香, 三ツ井良輔, 山田亮祐, 松本拓也, 荻野博康

    18th Asian Pacific Confederation of Chemical Engineering Congress  2019.09 

  • The improvement of organic solvent-tolerant lipase from Thermomyces lanuginosus

    松本拓也, 野上洋平, 山田亮祐, 荻野博康

    18th Asian Pacific Confederation of Chemical Engineering Congress  2019.09 

     More details

    Presentation type:Poster presentation  

  • The effect of single gene knockout on mevalonate production by Escherichia coli

    松本拓也, 濱田直樹, 田中勉, 荻野博康

    18th Asian Pacific Confederation of Chemical Engineering Congress  2019.09 

     More details

    Presentation type:Poster presentation  

  • The effect of gene knockout on mevalonate production or electricity generation by Escherichia coli

    松本拓也, 濱田直樹, 松井琢人, 田中勉, 荻野博康

    Biotrans2019  2019.07 

     More details

    Presentation type:Poster presentation  

  • Harnessing the sortase A-mediated peptide ligation Invited

    2019.06 

     More details

    Presentation type:Oral presentation (invited, special)  

  • Thermomyces lanuginosus由来リパーゼへの有機溶媒耐性付与

    松本拓也, 野上洋平, 山田亮祐, 荻野博康

    化学工学会第84年会  2019.03 

     More details

    Presentation type:Poster presentation  

  • 酵母細胞内におけるタンパク質の部位特異的連結技術

    谷口輝, 松本拓也, 山田亮祐, 荻野博康

    酵素工学研究会第90回講演会 

▼display all

Collaborative research (seeds) keywords

  • 酵素を用いた物質変換技術に関する研究

  • 遺伝子組換え微生物を用いた有用物質生産に関する研究

  • ペプチド転移酵素を使ったタンパク質修飾技術

  • 微生物を用いた電気培養システム

Outline of collaborative research (seeds)

  • 酵素を用いた物質変換技術に関する研究

  • 遺伝子組換え微生物を用いた有用物質生産に関する研究

  • ペプチド転移酵素を使ったタンパク質修飾技術

  • 微生物を用いた電気培養システム

Incentive donations / subsidies

  • PET分解酵素を表層提示した大腸菌による廃PETのアップサイクル

    公益財団法人藤森科学技術振興財団  2023

  • PET分解酵素を表層提示した菌体触媒

    公益財団法人フジシール財団  2023

  • 微生物-貴金属ハイブリッド触媒を用いた有用物質の一貫生産

    一般財団法人田中貴金属記念財団  2023

  • 海洋プラスチックを高効率で分解可能な耐塩性酵素の開発

    公益財団法人増屋記念基礎研究振興財団  2021

  • 有機溶媒に耐性を有するPET分解酵素の開発

    公益財団法人稲盛財団  2020

  • 表層提示技術を用いた大腸菌における細胞外電子伝達の構築

    公益財団法人住友財団  2018

  • 高効率物質生産酵母株の構築に向けた代謝酵素複合体のオルガネラ局在化技術の開発

    公益社団法人新化学技術推進協会  2018

▼display all

Charge of on-campus class subject

  • 物質化学生命系特別演習

    2022   Intensive lecture   Graduate school

  • 物質化学生命系特別演習第1

    2022   Intensive lecture   Graduate school

  • ケミカルエンジニアリングプラクティス

    2022   Weekly class   Undergraduate

  • 化学工学実験I

    2022   Weekly class   Undergraduate

  • 物質化学生命系特別研究 (化学工学分野)

    2022   Intensive lecture   Graduate school

  • 物質化学生命系特別演習第2 (化学工学分野)

    2022   Intensive lecture   Graduate school

  • Chemical Engineering Practice

    2020   Practical Training  

  • 化学工学実験I

    2020   Practical Training  

  • 化学工学実験I

    2019   Practical Training  

  • ケミカルエンジニアリングプラクティス

    2019   Practical Training  

▼display all

Faculty development activities

  • 化学工学実験I指針書  2022

     More details

    化学工学実験I指針書作成

  • ケミカルエンジニアリングプラクティス指針書  2022

     More details

    ケミカルエンジニアリングプラクティス指針書作成

  • 化学工学実験I指針書  2021

     More details

    化学工学実験I指針書作成

  • ケミカルエンジニアリングプラクティス指針書  2021

     More details

    ケミカルエンジニアリングプラクティス指針書作成

  • 化学工学実験I指針書  2020

     More details

    化学工学実験I指針書作成

  • ケミカルエンジニアリングプラクティス指針書  2020

     More details

    ケミカルエンジニアリングプラクティス指針書 作成

  • ケミカルエンジニアリングプラクティス指針書作成  2019

     More details

    ケミカルエンジニアリングプラクティス指針書

  • 化学工学実験I指針書  2019

     More details

    化学工学実験I指針書作成

  • 化学工学実験II指針書  2018

     More details

    化学工学実験II指針書作成

▼display all